CLC number: TP293
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-05-17
Cited: 3
Clicked: 7918
Li Lu, Dong-qin Feng, Jian Chu. Improving the real-time performance of Ethernet for plant automation (EPA) based industrial networks[J]. Journal of Zhejiang University Science C, 2013, 14(6): 433-448.
@article{title="Improving the real-time performance of Ethernet for plant automation (EPA) based industrial networks",
author="Li Lu, Dong-qin Feng, Jian Chu",
journal="Journal of Zhejiang University Science C",
volume="14",
number="6",
pages="433-448",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200363"
}
%0 Journal Article
%T Improving the real-time performance of Ethernet for plant automation (EPA) based industrial networks
%A Li Lu
%A Dong-qin Feng
%A Jian Chu
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 6
%P 433-448
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200363
TY - JOUR
T1 - Improving the real-time performance of Ethernet for plant automation (EPA) based industrial networks
A1 - Li Lu
A1 - Dong-qin Feng
A1 - Jian Chu
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 6
SP - 433
EP - 448
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200363
Abstract: real-time Ethernet (RTE) control systems with critical real-time requirements are called fast real-time (FRT) systems. To improve the real-time performance of ethernet for plant automation (EPA), we propose an EPA-FRT scheme. The minimum macrocycle of EPA networks is reduced by redefining the EPA network frame format, and the synchronization process is modified to acquire higher accuracy. A multi-segmented topology with a scheduling scheme is introduced to increase effective bandwidth utilization and reduce protocol overheads, and thus to shorten the communication cycle significantly. Performance analysis and practical tests on a prototype system show the effectiveness of the proposed scheme, which achieves the best performance at small periodic payload in large scale systems.
[1]Cena, G., Bertolotti, I.C., Scanzio, S., Valenzano, A., Zunino, C., 2012. Evaluation of EtherCAT distributed clock performance. IEEE Trans. Ind. Inf., 8(1):20-29.
[2]Cereia, M., Bertolotti, I.C., Scanzio, S., 2011. Performance of a real-time EtherCAT master under Linux. IEEE Trans. Ind. Inf., 7(4):679-687.
[3]Chen, S.X., An, B., 2010. Time Performance Research on Field Bus Based CNC System. Proc. 2nd ICMEE, p.56-59.
[4]Decotignie, J.D., 2005. Ethernet-based real-time and industrial communications. Proc. IEEE, 93(6):1102-1117.
[5]Erwinski, K., Paprocki, M., Grzesiak, L.M., Karwowski, K., Wawrzak, A., 2013. Application of Ethernet Powerlink for communication in a Linux RTAI open CNC system. IEEE Trans. Ind. Electron., 60(2):628-636.
[6]Felser, M., 2005. Real-time Ethernet—industry prospective. Proc. IEEE, 93(6):1118-1129.
[7]Ferrari, P., Flammini, A., Vitturi, S., 2006. Performance analysis of PROFINET networks. Comput. Stand. Interf., 28(4):369-385.
[8]Ferrari, P., Flammini, A., Rinaldi, S., Sisinni, E., 2010. On the seamless interconnection of IEEE1588-based devices using a PROFINET IO infrastructure. IEEE Trans. Ind. Inf., 6(3):381-392.
[9]FF-581:2003. Fieldbus Foundation System Architecture Specification. Fieldbus Foundation, Austin, TX.
[10]Gaderer, G., Loschmidt, P., Sauter, T., 2010. Improving fault tolerance in high-precision clock synchronization. IEEE Trans. Ind. Inf., 6(2):206-215.
[11]Gao, T., Yu, D., Vue, D., Hu, Y., 2010. Design and Implementation of Communication Platform in CNC System. Proc. IEEE/ASME Int. Conf. on MESA, p.355-360.
[12]Hanzalek, Z., Burget, P., Sucha, P., 2010. PROFINET IO IRT message scheduling with temporal constraints. IEEE Trans. Ind. Inf., 6(3):369-380.
[13]Hespanha, J.P., Naghshtabrizi, P., Xu, Y.G., 2007. A survey of recent results in networked control systems. Proc. IEEE, 95(1):138-162.
[14]Hong, S.H., Song, S.M., 2008. Transmission of a scheduled message using a foundation Fieldbus protocol. IEEE Trans. Instrum. Meas., 57(2):268-275.
[15]IEC 61158-3, 4, 5, 6:2000. Digital Data Communications for Measurement and Control - Parts 3 to 6: Fieldbus for Use in Industrial Control Systems. IEC, Geneva, Switzerland.
[16]IEC 61784-1:2007. Industrial Communication Networks - Part 1: Digital Data Communications for Measurement and Control - Part 1: Profile Sets for Continuous and Discrete Manufacturing Relative to Fieldbus Use in Industrial Control Systems. IEC, Geneva, Switzerland.
[17]IEC 61784-2:2007. Digital Data Communications for Measurement and Control - Part 2: Additional Profiles for ISO/IEC8802-3 Based Communication Networks in Real-Time Applications. IEC, Geneva, Switzerland.
[18]IEC 61784-14:2007. Industrial Communication Networks - Part 14: Additional Fieldbus Profiles for Real-Time Networks Based on ISO/IEC 8802-3. IEC, Geneva, Switzerland.
[19]IEEE 1588:2008. Precision Clock Synchronization Protocol for Networked Measurement and Control Systems.
[20]IEEE 802.3:2005. Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications.
[21]Jasperneite, J., Schumacher, M., Weber, K., 2007. Limits of Increasing the Performance of Industrial Ethernet Protocols. IEEE Conf. on Emerging Technologies & Factory Automation, p.17-24.
[22]Kim, K., Sung, M., Jin, H.W., 2012. Design and implementation of a delay-guaranteed motor drive for precision motion control. IEEE Trans. Ind. Inf., 8(2):351-365.
[23]Monmasson, E., Idkhajine, L., Cirstea, M.N., Bahri, I., Tisan, A., Naouar, M.W., 2011. FPGAs in industrial control applications. IEEE Trans. Ind. Inf., 7(2):224-243.
[24]Prytz, G., 2008. A Performance Analysis of EtherCAT and PROFINET IRT. IEEE Conf. on Emerging Technologies & Factory Automation, p.408-415.
[25]Raja, P., Ruiz, L., Decotignie, J.D., 1994. Modeling and Scheduling Real-Time Control Systems with Relative Consistency Constraints. Proc. 6th Euromicro Workshop on Real-Time Systems, p.46-52.
[26]Sauter, T., 2007. The continuing evolution of integration in manufacturing automation. IEEE Ind. Electron. Mag., 1(1):10-19.
[27]Sauter, T., 2010. The three generations of field-level networks—evolution and compatibility issues. IEEE Trans. Ind. Electron., 57(11):3585-3595.
[28]Sauter, T., Vasques, F., 2006. Special section on communication in automation. IEEE Trans. Ind. Inf., 2(2):73-77.
[29]Schumacher, M., Jasperneite, J., Weber, K., 2008. A New Approach for Increasing the Performance of the Industrial Ethernet System PROFINET. IEEE Int. Workshop on Factory Communication Systems, p.159-167.
[30]van den Heuvel, M.M.H.P., Bril, R.J., Lukkien, J.J., 2012. Transparent synchronization protocols for compositional real-time systems. IEEE Trans. Ind. Inf., 8(2):322-336.
[31]Vitturi, S., Peretti, L., Seno, L., Zigliotto, M., Zunino, C., 2011. Real-time Ethernet networks for motion control. Comput. Stand. Interf., 33(5):465-476.
Open peer comments: Debate/Discuss/Question/Opinion
<1>