Full Text:   <3138>

Summary:  <2173>

CLC number: TP393

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-02-19

Cited: 3

Clicked: 10607

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.3 P.187-199

http://doi.org/10.1631/jzus.C1300175


A probabilistic approach for predictive congestion control in wireless sensor networks


Author(s):  R. Annie Uthra, S. V. Kasmir Raja, A. Jeyasekar, Anthony J. Lattanze

Affiliation(s):  Department of Computer Science and Engineering, SRM University, Tamil Nadu 6003203, India; more

Corresponding email(s):   annieuthra@yahoo.com, svkr@yahoo.com, ajeyasekar@yahoo.com, lattanze@cs.cmu.edu

Key Words:  Congestion, Rate allocation, Congestion control, Packet loss, Back-off interval, Rate control


R. Annie Uthra, S. V. Kasmir Raja, A. Jeyasekar, Anthony J. Lattanze. A probabilistic approach for predictive congestion control in wireless sensor networks[J]. Journal of Zhejiang University Science C, 2014, 15(3): 187-199.

@article{title="A probabilistic approach for predictive congestion control in wireless sensor networks",
author="R. Annie Uthra, S. V. Kasmir Raja, A. Jeyasekar, Anthony J. Lattanze",
journal="Journal of Zhejiang University Science C",
volume="15",
number="3",
pages="187-199",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300175"
}

%0 Journal Article
%T A probabilistic approach for predictive congestion control in wireless sensor networks
%A R. Annie Uthra
%A S. V. Kasmir Raja
%A A. Jeyasekar
%A Anthony J. Lattanze
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 3
%P 187-199
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300175

TY - JOUR
T1 - A probabilistic approach for predictive congestion control in wireless sensor networks
A1 - R. Annie Uthra
A1 - S. V. Kasmir Raja
A1 - A. Jeyasekar
A1 - Anthony J. Lattanze
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 3
SP - 187
EP - 199
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300175


Abstract: 
Any node in a wireless sensor network is a resource constrained device in terms of memory, bandwidth, and energy, which leads to a large number of packet drops, low throughput, and significant waste of energy due to retransmission. This paper presents a new approach for predicting congestion using a probabilistic method and controlling congestion using new rate control methods. The probabilistic approach used for prediction of the occurrence of congestion in a node is developed using data traffic and buffer occupancy. The rate control method uses a back-off selection scheme and also rate allocation schemes, namely rate regulation (RRG) and split protocol (SP), to improve throughput and reduce packet drop. A back-off interval selection scheme is introduced in combination with rate reduction (RR) and RRG. The back-off interval selection scheme considers channel state and collision-free transmission to prevent congestion. Simulations were conducted and the results were compared with those of decentralized predictive congestion control (DPCC) and adaptive duty-cycle based congestion control (ADCC). The results showed that the proposed method reduces congestion and improves performance.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bhargava, V., Jose, J., Srinivasan, K., et al., 2012. Q-CMRA: queue-based channel-measurement and rate-allocation. IEEE Trans. Wirel. Commun., 11(11):4214-4223.

[2]Boutsis, I., Kalogeraki, V., 2012. RADAR: adaptive rate allocation in distributed stream processing systems under bursty workloads. Proc. 31st Symp. on Reliable Distributed Systems, p.285-290.

[3]Cheng, M., Gong, X., Cai, L., 2009. Joint routing and link rate allocation under bandwidth and energy constraints in sensor networks. IEEE Trans. Wirel. Commun., 8(7):3770-3779.

[4]Cheng, T.E., Bajcsy, R., 2004. Congestion control and fairness for many-to-one routing in sensor networks. Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.148-161.

[5]Felemban, E., Lee, C., Ekici, E., 2006. MMSPEED: multipath multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Trans. Mob. Comput., 5(6):738-754.

[6]He, T., Stankovic, J.A., Lu, C., et al., 2003. SPEED: a stateless protocol for real-time communication in sensor networks. Proc. 23rd Int. Conf. on Distributed Computing Systems, p.46-55.

[7]Hull, B., Jamieson, K., Balakrishnan, H., 2004. Mitigating congestion in wireless sensor networks. Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, p.134-147.

[8]Hussain, F.B., Cebi, Y., Shah, G.A., 2008. A multievent congestion control protocol for wireless sensor networks. EURASIP J. Wirel. Commun. Netw., 2008:803271.

[9]Karenos, K., Kalogeraki, V., Krishnamurthy, S.V., 2008. Cluster-based congestion control for sensor networks. ACM Trans. Sens. Netw., 4(1):5:1-5:39.

[10]Kumar, R., Crepaldi, R., Rowaihy, H., et al., 2008. Mitigating performance degradation in congested sensor networks. IEEE Trans. Mob. Comput., 7(6):682-697.

[11]Lee, D., Chung, K., 2010. Adaptive duty-cycle based congestion control for home automation networks. IEEE Trans. Consum. Electron., 56(1):42-47.

[12]Lu, C., Blum, B.M., Abdelzaher, T.F., et al., 2002. RAP: a real-time communication architecture for large-scale wireless sensor networks. Proc. 8th IEEE Real-Time and Embedded Technology and Applications Symp., p.55-66.

[13]Mao, Z., Koksal, C.E., Shroff, N.B., 2012. Near optimal power and rate control of multi-hop sensor networks with energy replenishment: basic limitations with finite energy and data storage. IEEE Trans. Automat. Contr., 57(4):815-829.

[14]Morell, A., Vicario, J.L., Vilajosana, X., et al., 2011. Optimal rate allocation in cluster-tree WSNs. Sensors, 11(4):3611-3639.

[15]Rangwala, S., Gummadi, R., Govindan, R., et al., 2006. Interference-aware fair rate control in wireless sensor networks. Proc. Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications, p.63-74.

[16]Ren, F., He, T., Das, S., et al., 2011. Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Trans. Parall. Distr. Syst., 22(9):1585-1599.

[17]Teo, J.Y., Ha, Y., Tham, C.K., 2008. Interference-minimized multipath routing with congestion control in wireless sensor network for high-rate streaming. IEEE Trans. Mob. Comput., 7(9):1124-1137.

[18]Uthra, R.A., Raja, S.V.K., 2011. PACC: probabilistic approach for congestion control in wireless sensor network. CiiT Int. J. Wirel. Commun., 3:985-990.

[19]Uthra, R.A., Raja, S.V.K., 2012. QoS routing in wireless sensor networks—a survey. ACM Comput. Surv., 45(1):9.1-9.12.

[20]Wan, C.Y., Eisenman, S.B., Campbell, A.T., 2003. CODA: congestion detection and avoidance in sensor networks. Proc. 1st Int. Conf. on Embedded Networked Sensor Systems, p.266-279.

[21]Wang, C., Sohraby, K., Lawrence, V., et al., 2006. Priority-based congestion control in wireless sensor networks. Proc. IEEE Int. Conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing, p.22-31.

[22]Wu, Y., Yuan, Z., Wu, Y., 2013. A predictive control strategy for networked control system with destabilizing transmission factors. Adv. Sci. Eng. Med., 5(1):83-90.

[23]Zawodniok, M., Jagannathan, S., 2007. Predictive congestion control protocol for wireless sensor networks. IEEE Trans. Wirel. Commun., 6(11):3955-3963.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE