Full Text:   <3393>

Summary:  <1908>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-03-17

Cited: 0

Clicked: 8140

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.4 P.254-264

http://doi.org/10.1631/jzus.C1300248


Preservation of local linearity by neighborhood subspace scaling for solving the pre-image problem


Author(s):  Sheng-kai Yang, Jian-yi Meng, Hai-bin Shen

Affiliation(s):  Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   skyangzju@gmail.com, mengjy@vlsi.zju.edu.cn, shb@vlsi.zju.edu.cn

Key Words:  Kernel method, Pre-image problem, Nonlinear denoising, Kernel PCA, Local linearity preserving


Sheng-kai Yang, Jian-yi Meng, Hai-bin Shen. Preservation of local linearity by neighborhood subspace scaling for solving the pre-image problem[J]. Journal of Zhejiang University Science C, 2014, 15(4): 254-264.

@article{title="Preservation of local linearity by neighborhood subspace scaling for solving the pre-image problem",
author="Sheng-kai Yang, Jian-yi Meng, Hai-bin Shen",
journal="Journal of Zhejiang University Science C",
volume="15",
number="4",
pages="254-264",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300248"
}

%0 Journal Article
%T Preservation of local linearity by neighborhood subspace scaling for solving the pre-image problem
%A Sheng-kai Yang
%A Jian-yi Meng
%A Hai-bin Shen
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 4
%P 254-264
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300248

TY - JOUR
T1 - Preservation of local linearity by neighborhood subspace scaling for solving the pre-image problem
A1 - Sheng-kai Yang
A1 - Jian-yi Meng
A1 - Hai-bin Shen
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 4
SP - 254
EP - 264
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300248


Abstract: 
An important issue involved in kernel methods is the pre-image problem. However, it is an ill-posed problem, as the solution is usually nonexistent or not unique. In contrast to direct methods aimed at minimizing the distance in feature space, indirect methods aimed at constructing approximate equivalent models have shown outstanding performance. In this paper, an indirect method for solving the pre-image problem is proposed. In the proposed algorithm, an inverse mapping process is constructed based on a novel framework that preserves local linearity. In this framework, a local nonlinear transformation is implicitly conducted by neighborhood subspace scaling transformation to preserve the local linearity between feature space and input space. By extending the inverse mapping process to test samples, we can obtain pre-images in input space. The proposed method is non-iterative, and can be used for any kernel functions. Experimental results based on image denoising using kernel principal component analysis (PCA) show that the proposed method outperforms the state-of-the-art methods for solving the pre-image problem.

基于邻域子空间缩放维持局部线性的原像算法

研究目的:原像问题广泛存在于各种核方法中,是一个悬而未决的重要问题。由于该问题是不适定的,其解往往不唯一甚至不存在。本文对目前主流的原像求解算法进行了分析和归纳,并探讨求解原像的更有效方法。
创新要点:基于局部线性保持的基本思想,结合邻域子空间的缩放变换,提出了一种新的逆映射构造方法。
研究方法:该算法包含两个步骤:(1)通过近邻子空间缩放变换以及局部线性保持,建立训练样本的局部逆映射过程;(2)基于该局部逆映射,利用光滑性假设得到测试样本的局部逆映射,进而求解得到原像。
重要结论:实验结果表明,本文提出的算法在图像降噪性能上优于目前的主流原像算法,同时具有较小的时间复杂度。

关键词:核方法;原像问题;非线性降噪;核主成分分析;局部线性保持

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abrahamsen, T.J., Hansen, L.K., 2011. Regularized pre-image estimation for kernel PCA de-noising. J. Signal Process. Syst., 65(3):403-412.

[2]Arif, O., Vela, P.A., Daley, W., 2010. Pre-image problem in manifold learning and dimensional reduction methods. Proc. 9th Int. Conf. on Machine Learning and Applications, p.921-924.

[3]Bakir, G.H., Weston, J., Scholkopf, B., 2003. Learning to find pre-images. Adv. Neur. Inform. Process. Syst., 16(7):449-456.

[4]Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell., 23(6):643-660.

[5]Gruber, P., Stadlthanner, K., Bohm, M., et al., 2006. Denoising using local projective subspace methods. Neurocomputing, 69(13-15):1485-1501.

[6]Honeine, P., Richard, C., 2011a. A closed-form solution for the pre-image problem in kernel-based machines. J. Signal Process. Syst., 65(3):289-299.

[7]Honeine, P., Richard, C., 2011b. Preimage problem in kernel-based machine learning. IEEE Signal Process. Mag., 28(2):77-88.

[8]Huang, D., Tian, Y.D., de la Torre, F., 2011. Local isomorphism to solve the pre-image problem in kernel methods. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2761-2768.

[9]Izenman, A.J., 2008. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer, New York, USA.

[10]Jenssen, R., 2010. Kernel entropy component analysis. IEEE Trans. Pattern Anal. Mach. Intell., 32(5):847-860.

[11]Kallas, M., Honeine, P., Richard, C., et al., 2013. Non-negativity constraints on the pre-image for pattern recognition with kernel machines. Pattern Recog., 46(11):3066-3080.

[12]Kim, K.I., Franz, M.O., Scholkopf, B., 2005. Iterative kernel principal component analysis for image modeling. IEEE Trans. Pattern Anal. Mach. Intell., 27(9):1351-1366.

[13]Kwok, J.T.Y., Tsang, I.W., 2004. The pre-image problem in kernel methods. IEEE Trans. Neur. Networks, 15(6):1517-1525.

[14]Lee, K.C., Ho, J., Kriegman, D., 2005. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell., 27(5):684-698.

[15]Li, J.W., Su, L., 2008. Combining KPCA and PSO for pattern denoising. Proc. Chinese Conf. on Pattern Recognition, p.1-6.

[16]Li, J.W., Su, L., Cheng, C., 2011. Finding pre-images via evolution strategies. Appl. Soft Comput., 11(6):4183-4194.

[17]Mika, S., Scholkopf, B., Smola, A., et al., 1998. Kernel PCA and de-noising in feature spaces. Adv. Neur. Inform. Process. Syst., 11:536-542.

[18]Nguyen, M.H., de la Torre, F., 2008. Robust kernel principal component analysis. Adv. Neur. Inform. Process. Syst., 21:1185-1192.

[19]Park, J., Kang, D., Kim, J., et al., 2007. SVDD-based pattern denoising. Neur. Comput., 19(7):1919-1938.

[20]Rathi, Y., Dambreville, S., Tannenbaum, A., 2006. Statistical shape analysis using kernel PCA. SPIE, 6064:60641B.

[21]Saul, L.K., Roweis, S.T., 2003. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res., 4:119-155.

[22]Scholkopf, B., Smola, A., Muller, K.R., 1997. Kernel principal component analysis. Proc. 7th Int. Conf. on Artificial Neural Networks, p.583-588.

[23]Scholkopf, B., Herbrich, R., Smola, A.J., 2001. A generalized representer theorem. Proc. 14th Annual Conf. on Computational Learning Theory and 5th European Conf. on Computational Learning Theory, p.416-426.

[24]Teixeira, A.R., Tome, A.M., Stadlthanner, K., et al., 2008. KPCA denoising and the pre-image problem revisited. Digit. Signal Process., 18(4):568-580.

[25]Zheng, W.S., Lai, J.H., 2006. Regularized locality preserving learning of pre-image problem in kernel principal component analysis. Proc. 18th Int. Conf. on Pattern Recognition, p.456-459.

[26]Zheng, W.S., Lai, J.H., Yuen, P.C., 2010. Penalized preimage learning in kernel principal component analysis. IEEE Trans. Neur. Networks, 21(4):551-570.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE