Full Text:   <4822>

Summary:  <2303>

CLC number: TM715

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-03-17

Cited: 10

Clicked: 10372

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.4 P.300-311

http://doi.org/10.1631/jzus.C1300250


Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm


Author(s):  Shan Cheng, Min-you Chen, Rong-jong Wai, Fang-zong Wang

Affiliation(s):  College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China; more

Corresponding email(s):   hpucquyzu@ctgu.edu.cn, mchencqu@126.com, rjwai@saturn.yzu.edu.tw, fzwang@ctgu.edu.cn

Key Words:  Distributed generation, Multi-objective particle swarm optimization, Optimal placement, Voltage stability index, Power loss


Shan Cheng, Min-you Chen, Rong-jong Wai, Fang-zong Wang. Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm[J]. Journal of Zhejiang University Science C, 2014, 15(4): 300-311.

@article{title="Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm",
author="Shan Cheng, Min-you Chen, Rong-jong Wai, Fang-zong Wang",
journal="Journal of Zhejiang University Science C",
volume="15",
number="4",
pages="300-311",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300250"
}

%0 Journal Article
%T Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm
%A Shan Cheng
%A Min-you Chen
%A Rong-jong Wai
%A Fang-zong Wang
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 4
%P 300-311
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300250

TY - JOUR
T1 - Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm
A1 - Shan Cheng
A1 - Min-you Chen
A1 - Rong-jong Wai
A1 - Fang-zong Wang
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 4
SP - 300
EP - 311
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300250


Abstract: 
This paper deals with the optimal placement of distributed generation (DG) units in distribution systems via an enhanced multi-objective particle swarm optimization (EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational constraints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been integrated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is employed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage stability. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and locations of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units.

基于改进多目标粒子群优化算法的分布式发电在配电网中的优化配置

研究目的:分布式发电装置的优化配置是保证各分布式电源充分发挥其积极作用的基础,是电力工作者规划分布式发电时面临的挑战性工作。本文旨在综合考虑系统运行的经济和技术指标,构建多种约束条件下的分布式发电在配电网中的多目标优化配置模型和优化求解算法,求得分布式发电的最佳安装位置和容量。
创新要点:综合考虑系统损耗和电压稳定性指标,构建了多种约束条件下的分布式发电多目标优化配置模型,并提出兼顾收敛性和多样性的改进的多目标粒子群优化算法,求得分布式发电在配电网中的最佳安装位置和容量。
方法提亮:该模型未将多目标优化问题简单地转化为单目标优化问题求解,而是采用改进的多目标粒子群优化算法求解;粒子群算法收敛性和多样性得到加强的关键是,提高种群的多样性(式(11)和(14))和提高非劣解的分布均匀性(图2)。
重要结论:(1)采用多目标优化方法对分布式发电的安装位置和容量同时进行优化求解,所得的优化方案带来的效益优于采用单目标优化方法以及仅对安装位置或容量进行优化求解;(2)分散安装于配电网所带来的效益,优于集中安置于一点;(3)改进的多目标粒子群优化算法兼顾了多目标优化算法的收敛性和多样性。

关键词:分布式发电;多目标粒子群优化;优化配置;电压稳定指标;网损

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abu-Mouti, F.S., El-Hawary, M.E., 2011. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm. IEEE Trans. Power Del., 26(4):2090-2101.

[2]Akorede, M.F., Hizam, H., Aris, I., et al., 2011. Effective method for optimal allocation of distributed generation units in meshed electric power systems. IET Gener. Transm. Distr., 5(2):276-287.

[3]Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al., 2010. Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst., 25(1):360-370.

[4]Ayres, H.M., Freitas, W., de Almeida, et al., 2010. Method for determining the maximum allowable penetration level of distributed generation without steady-state voltage violations. IET Gener. Transm. Distr., 4(4):495-508.

[5]Baran, M.E., Wu, F.F., 1989. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Del., 4(2):1401-1407.

[6]Chen, M.Y., Cheng, S., 2012. Multi-objective optimization of the allocation of DG units considering technical, economical and environmental attributes. Przeglad Elektrotechnizny, 88(12A):233-237.

[7]Chen, M.Y., Zhang, C.Y., Luo, C.Y., 2009. Adaptive evolutionary multi-objective particle swarm optimization algorithm. Contr. Dec., 24(12):1851-1855 (in Chinese).

[8]Coello, C.A.C., Pulido, G.T., Lechuga, M.S., 2004. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput., 8(3):256-279.

[9]Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York, USA, p.7.

[10]Deb, K., Pratap, A., Agarwal, S., et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182-197.

[11]Dehghanian, P., Hosseini, S.H., Moeini-Aghtaie, M., et al., 2013. Optimal siting of DG Units in power systems from a probabilistic multi-objective optimization perspective. Int. J. Electr. Power Energy Syst., 51(10):14-26.

[12]Devi, S., Geethanjali, M., 2013. Application of modified bacterial foraging optimization algorithm for optimal placement and sizing of distributed generation. Expert Syst. Appl., 41(6):2772-2781.

[13]Gopiya Naik, S., Khatod, D.K., Sharma, M.P., 2013. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. Int. J. Electr. Power Energy Syst., 53(12):967-973.

[14]Hu, G.H., He, W., Cheng, S., et al., 2013. Optimal allocation of distributed generation units considering environmental effects. J. Inf. Comput. Sci., 10(11):3353-3362.

[15]Jia, S.J., Du, B., Yue, H., 2012. Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm. Contr. Dec., 27(6):813-818 (in Chinese).

[16]Kumar, K.V., Selvan, M.P., 2009. Planning and operation of distributed generations in distribution systems for improved voltage profile. Power Systems Conf. and Exposition, p.1-7.

[17]Lee, S.H., Park, J.W., 2009. Selection of optimal location and size of multiple distributed generations by using Kalman filter algorithm. IEEE Trans. Power Syst., 24(3):1393-1400.

[18]Li, X.D., 2003. A non-dominated sorting particle swarm optimizer for multiobjective optimization. LNCS, 2723: 27-48.

[19]Li, Y., Zhou, B.X., Lin, N., et al., 2013. Application of improved clonal genetic algorithm in distributed generation planning. Proc. CSU-EPSA, 25(4):128-132 (in Chinese).

[20]Liu, J., Bi, P.X., Dong, H.P., 2002. Analysis and Optimization of Complex Distribution Networks. China Electric Power Press, Beijing, China, p.140 (in Chinese).

[21]Mistry, K.D., Roy, R., 2014. Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth. Int. J. Electr. Power Energy Syst., 54(1): 505-515.

[22]Moradi, M.H., Abedini, M., 2012. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst., 34(1):66-74.

[23]Ratnaweera, A., Halgamuge, S.K., Watson, H.C., 2004. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 8(3):240-255.

[24]Sheng, W.X., Liu, Y.M., Meng, X.L., et al., 2012. An improved strength Pareto evolutionary algorithm 2 with application to the optimization of distributed generations. Comput. Math. Appl., 64(5):944-955.

[25]Sierra, M.R., Coello, C.A.C., 2006. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res., 2(3):287-308.

[26]Tanaka, K., Oshiro, M., Toma, S., et al., 2010. Decentralised control of voltage in distribution systems by distributed generators. IET Gener. Transm. Distr., 4(11):1251-1260.

[27]Yu, Q., Liu, G., Liu, Z.F., et al., 2013. Multi-objective optimal planning of distributed generation based on quantum differential evolution algorithm. Power Syst. Protect. Contr., 41(14):66-72 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE