Full Text:   <3183>

Summary:  <1917>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-05-04

Cited: 3

Clicked: 8720

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.6 P.445-457

http://doi.org/10.1631/jzus.C1400025


An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering


Author(s):  Tong-yang Jiang, Mei-qin Liu, Xie Wang, Sen-lin Zhang

Affiliation(s):  State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   jiangtongyang@zju.edu.cn, liumeiqin@zju.edu.cn, wangxiek@zju.edu.cn, slzhang@zju.edu.cn

Key Words:  Measurement-driven, Gating technique, Sequential Monte Carlo, Multi-Bernoulli filter, Multi-target filtering


Tong-yang Jiang, Mei-qin Liu, Xie Wang, Sen-lin Zhang. An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering[J]. Journal of Zhejiang University Science C, 2014, 15(6): 445-457.

@article{title="An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering",
author="Tong-yang Jiang, Mei-qin Liu, Xie Wang, Sen-lin Zhang",
journal="Journal of Zhejiang University Science C",
volume="15",
number="6",
pages="445-457",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400025"
}

%0 Journal Article
%T An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering
%A Tong-yang Jiang
%A Mei-qin Liu
%A Xie Wang
%A Sen-lin Zhang
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 6
%P 445-457
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400025

TY - JOUR
T1 - An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering
A1 - Tong-yang Jiang
A1 - Mei-qin Liu
A1 - Xie Wang
A1 - Sen-lin Zhang
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 6
SP - 445
EP - 457
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400025


Abstract: 
We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli (SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are distinguished from the original measurements using the gating technique. Then the survival measurements are used to update both survival and birth targets, and the birth measurements are used to update only the birth targets. Since most clutter measurements do not participate in the update step, the computing time is reduced significantly. Simulation results demonstrate that the proposed approach improves the real-time performance without degradation of filtering performance.

一种用于多目标滤波的有效量测驱动序列蒙塔卡洛多伯努利滤波器

研究目的:序列蒙塔卡洛多伯努利滤波器的计算复杂度随量测个数线性增长,尤其在杂波环境下,量测中包含大量杂波量测,如果考虑所有的量测,将大大增加计算量,并且杂波量测也会降低滤波精度。因此,有必要从初始量测中区分可能的生存目标量测、新生目标量测和杂波量测,从而消除杂波量测,提高多目标滤波的实时性。
创新要点:利用跟踪门技术区分可能的生存目标量测、新生目标量测和杂波量测,之后用生存目标量测更新生存和新生目标,而新生目标量测只用来更新新生目标,从而在保证多目标滤波精度前提下,提高了多目标滤波的实时性。
方法提亮:首次利用跟踪门技术来区分可能的生存目标量测、新生目标量测和杂波量测,并提出了量测驱动方法用于序列蒙塔卡洛多伯努利滤波器。
重要结论:同初始的序列蒙塔卡洛多伯努利滤波器相比,本文所提方法在保证多目标滤波精度前提下,提高了多目标滤波的实时性。

关键词:量测驱动;序列蒙塔卡洛;多伯努利滤波;跟踪门技术;多目标滤波

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bar-Shalom, Y., Li, X.R., Kirubarajan, T., 2001. Estimation with Applications to Tracking and Navigation. Wiley, New York.

[2]Baser, E., Kirubarajan, T., Efe, M., 2013. Improved MeMBer filter with modeling of spurious targets. Int. Conf. on Information Fusion, p.813-819.

[3]Blackman, S., Popoli, R., 1999. Design and Analysis of Modern Tracking Systems. Artech House, Norwood.

[4]Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A., 2013a. Multi-Bernoulli sensor control for multi-target tracking. Proc. IEEE 8th Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing, p.312-317.

[5]Gostar, A.K., Hoseinnezhad, R., Bab-Hadiashar, A., 2013b. Robust multi-Bernoulli sensor selection for multi-target tracking in sensor networks. IEEE Trans. Signal Process. Lett., 20(12):1167-1170.

[6]Hoang, H.G., Vo, B.T., 2014. Sensor management for multi-target tracking via multi-Bernoulli filtering. Automatica, 50(4):1135-1142.

[7]Hoseinnezhad, R., Vo, B.N., Vo, B.T., et al., 2011. Bayesian integration of audio and visual information for multi-target tracking using a CB-MeMBer filter. IEEE Int. Conf. on Acoust Speech Signal Processing, p.2300-2303.

[8]Hoseinnezhad, R., Vo, B.N., Vo, B.T., 2013. Visual tracking in background subtracted image sequences via multi-Bernoulli filtering. IEEE Trans. Signal Process., 61(2):392-397.

[9]Li, X.R., Jilkov, V., 2003. Survey of maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst., 39(4):1333-1364.

[10]Lian, F., Li, C., Han, C.Z., et al., 2012. Convergence analysis for the SMC-MeMBer and SMC-CBMeMBer filters. J. Appl. Math., Article ID 584140.

[11]Mahler, R., 2003. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst., 39(4):1152-1178.

[12]Mahler, R., 2007a. PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst., 43(4):1523-1543.

[13]Mahler, R., 2007b. Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood.

[14]Ravindra, V.C., Svensson, L., Hammarstrand, L., et al., 2012. A cardinality preserving multitarget multi-Bernoulli RFS tracker. Int. Conf. on Information Fusion, p.832-839.

[15]Schuhmacher, D., Vo, B.T., Vo, B.N., 2008. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process., 56(8):3447-3457.

[16]Vo, B.N., Ma, W., 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process., 54(11):1091-4004.

[17]Vo, B.N., Singh, S., Doucet, A., 2005. Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst., 41(4):1224-1245.

[18]Vo, B.N., Vo, B.T., Pham, N.T., et al., 2010. Joint detection and estimation of multiple objects from image observations. IEEE Trans. Signal Process., 58(10):5129-5141.

[19]Vo, B.T., 2008. Random Finite Sets in Multi-object Filtering. PhD Thesis, The University of Western Australia, Perth, Australia.

[20]Vo, B.T., Vo, B.N., 2013. Labeled random finite sets and multi-object conjugate priors. IEEE Trans. Signal Process., 61(13):3460-3475.

[21]Vo, B.T., Vo, B.N., Cantoni, A., 2007. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans. Signal Process., 55(7):3553-3567.

[22]Vo, B.T., Vo, B.N., Cantoni, A., 2009. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. Signal Process., 57(2):409-423.

[23]Vo, B.T., Vo, B.N., Hoseinnezhad, R., et al., 2011. Multi-Bernoulli filtering with unknown clutter intensity and sensor field-of-view. 45th Annual Conf. on Information Sciences and Systems, p.1-6.

[24]Vo, B.T., Vo, B.N., Hoseinnezhad, R., et al., 2013. Robust multi-Bernoulli filtering. IEEE J. Sel. Topics Signal Process., 7(3):399-409.

[25]Wei, J., Zhang, X., 2009. Dynamic node collaboration for mobile multi-target tracking in two-tier wireless camera sensor networks. Proc. IEEE Military Communications Conf., p.1-7.

[26]Wei, J., Zhang, X., 2010a. Efficient node collaboration for mobile multi-target tracking using two-tier wireless camera sensor networks. IEEE Int. Conf. on Communications, p.1-5.

[27]Wei, J., Zhang, X., 2010b. Sensor self-organization for mobile multi-target tracking in decentralized wireless sensor networks. IEEE Wireless Communications and Networking Conf., p.1-6.

[28]Williams, J.L., 2012. Hybrid Poisson and multi-Bernoulli filters. Int. Conf. on Information Fusion, p.1103-1110.

[29]Yin, J.J., Zhang, J.Q., 2010. The nonlinear multi-target multi-Bernoulli filter using polynomial interpolation. Proc. IEEE 10th Int. Conf. on Signal Processing, p.2551-2554.

[30]Yin, J.J., Zhang, J.Q., Zhao, J., 2010. The Gaussian particle multi-target multi-Bernoulli filter. IEEE 2nd Int. Conf. on Advanced Computer Control, p.556-560.

[31]Zheng, Y.M., Shi, Z.G., Lu, R.X., et al., 2013. An efficient data-driven particle PHD filter for multitarget tracking. IEEE Trans. Ind. Inform., 9(4):2318-2326.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE