CLC number: TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-05-06
Cited: 0
Clicked: 6774
Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. Unseen head pose prediction using dense multivariate label distribution[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(6): 516-526.
@article{title="Unseen head pose prediction using dense multivariate label distribution",
author="Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="6",
pages="516-526",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500235"
}
%0 Journal Article
%T Unseen head pose prediction using dense multivariate label distribution
%A Gao-li Sang
%A Hu Chen
%A Ge Huang
%A Qi-jun Zhao
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 6
%P 516-526
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500235
TY - JOUR
T1 - Unseen head pose prediction using dense multivariate label distribution
A1 - Gao-li Sang
A1 - Hu Chen
A1 - Ge Huang
A1 - Qi-jun Zhao
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 6
SP - 516
EP - 526
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500235
Abstract: Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation, and emotion analysis. Most existing methods estimate head poses that are included in the training data (i.e., previously seen head poses). To predict head poses that are not seen in the training data, some regression-based methods have been proposed. However, they focus on estimating continuous head pose angles, and thus do not systematically evaluate the performance on predicting unseen head poses. In this paper, we use a dense multivariate label distribution (MLD) to represent the pose angle of a face image. By incorporating both seen and unseen pose angles into MLD, the head pose predictor can estimate unseen head poses with an accuracy comparable to that of estimating seen head poses. On the Pointing’04 database, the mean absolute errors of results for yaw and pitch are 4.01° and 2.13°, respectively. In addition, experiments on the CAS-PEAL and CMU Multi-PIE databases show that the proposed dense MLD-based head pose estimation method can obtain the state-of-the-art performance when compared to some existing methods.
This paper proposes a head pose estimation method using dense multivariate label distribution. It solves the problem that the training data cannot cover all the possible test data due to large (head pose) sampling interval in training. The key idea is to produce a dense MLD to sample head pose angles densely. The results appear quite promising.
[1]Aghajanian, J., Prince, S.J.D., 2009. Face pose estimation in uncontrolled environments. Proc. British Machine Vision Conf., p.1-11.
[2]Berger, A.L., Pietra, V.J.D., Pietra, S.A.D., 1996. A maximum entropy approach to natural language processing. Comput. Ling., 22(1):39-71.
[3]Bowyer, K.W., Chang, K., Flynn, P., 2006. A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition. Comput. Vis. Image Understand., 101(1):1-15.
[4]Brunelli, R., 1997. Estimation of pose and illuminant direction for face processing. Image Vis. Comput., 15(10):741-748.
[5]Cai, Y., Yang, M.L., Li, Z.Q., 2015. Robust head pose estimation using a 3D morphable model. Math. Prob. Eng., 2015:678973.1-678973.10.
[6]Do, M.N., 2003. Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models. IEEE Signal Process. Lett., 10(4):115-118.
[7]Fenzi, M., Leal-Taixé, L., Rosenhahn, B., et al., 2013. Class generative models based on feature regression for pose estimation of object categories. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.755-762.
[8]Fitzpatrick, P., 2000. Head Pose Estimation Without Manual Initialization. Report, Massachusetts Institute of Technology, Cambridge.
[9]Gao, W., Cao, B., Shan, S.G., et al., 2008. The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans. Syst. Man Cybern. A, 38(1):149-161.
[10]Geng, X., Xia, Y., 2014. Head pose estimation based on multivariate label distribution. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1837-1842.
[11]Gourier, N., Hall, D., Crowley, J.L., 2004. Estimating face orientation from robust detection of salient facial features. Proc. Int. Workshop on Visual Observation of Deictic Gestures. Available from http://www-prima.inrialpes.fr/perso/Gourier/Faces/HPDatabase.html.
[12]Gross, R., Matthews, I., Cohn, J., et al., 2010. Multi-PIE. Image Vis. Comput., 28(5):807-813.
[13]Haj, M.A., Gonzàlez, J., Davis, L.S., 2012. On partial least squares in head pose estimation: how to simultaneously deal with misalignment. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2602-2609.
[14]Hu, C.L., Gong, L.Y., Wang, T.J., et al., 2014. An effective head pose estimation approach using Lie algebrized Gaussians based face representation. Multim. Tools Appl., 73(3):1863-1884.
[15]Huang, D., Storer, M., de la Torre, F., et al., 2011. Supervised local subspace learning for continuous head pose estimation. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2921-2928.
[16]Jain, V., Crowley, J.L., 2013. Head pose estimation using multi-scale Gaussian derivatives. Proc. 18th Scandinavian Conf. on Image Analysis, p.319-328.
[17]Krüger, V., Sommer, G., 2002. Gabor wavelet networks for efficient head pose estimation. Image Vis. Comput., 20(9-10):665-672.
[18]Liu, D.C., Nocedal, J., 1989. On the limited memory BFGS method for large scale optimization. Math. Program., 45(1):503-528.
[19]Lu, F., Sugano, Y., Okabe, T., et al., 2012. Head pose-free appearance-based gaze sensing via eye image synthesis. Proc. 21st Int. Conf. on Pattern Recognition, p.1008-1011.
[20]Lu, F., Okabe, T., Sugano, Y., et al., 2014. Learning gaze biases with head motion for head pose-free gaze estimation. Image Vis. Comput., 32(3):169-179.
[21]Ma, B.P., Chai, X.J., Wang, T.J., 2013. A novel feature descriptor based on biologically inspired feature for head pose estimation. Neurocomputing, 115:1-10.
[22]Ma, B.P., Li, A.N., Chai, X.J., et al., 2014. CovGa: a novel descriptor based on symmetry of regions for head pose estimation. Neurocomputing, 143:97-108.
[23]Ma, B.P., Huang, R., Qin, L., 2015. VoD: a novel image representation for head yaw estimation. Neurocomputing, 148:455-466.
[24]Ma, X.H., Tan, Y.Q., Zheng, G.M., 2013. A fast classification scheme and its application to face recognition. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(7):561-572.
[25]Murphy-Chutorian, E., Trivedi, M.M., 2009. Head pose estimation in computer vision: a survey. IEEE Trans. Patt. Anal. Mach. Intell., 31(4):607-626.
[26]Pang, H., Lin, A., Holford, M., et al., 2006. Pathway analysis using random forests classification and regression. Bioinformatics, 22(16):2028-2036.
[27]Sim, T., Baker, S., Bsat, M., 2002. The CMU pose, illumination, and expression (PIE) database. Proc. 5th IEEE Int. Conf. on Automatic Face and Gesture Recognition, p.46-51.
[28]Tang, Y.Q., Sun, Z.N., Tan, T.N., 2014. A survey on head pose estimation. Patt. Recogn. Artif. Intell., 27(3):213-225.
[29]Wu, J.W., Trivedi, M.M., 2008. A two-stage head pose estimation framework and evaluation. Patt. Recog., 41(3):1138-1158.
[30]Zhang, Z.P., Luo, P., Loy, C.C., et al., 2014. Facial landmark detection by deep multi-task learning. Proc. 13th European Conf. on Computer Vision, p.94-108.
[31]Zhu, R.H., Sang, G.L., Cai, Y., et al., 2013. Head pose estimation with improved random regression forests. Proc. 8th Chinese Conf. on Biometric Recognition, p.457-465.
[32]Zhu, X.X., Ramanan, D., 2012. Face detection, pose estimation, and landmark localization in the wild. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2879-2886.
Open peer comments: Debate/Discuss/Question/Opinion
<1>