CLC number: TP273
On-line Access: 2016-12-13
Received: 2015-10-03
Revision Accepted: 2016-04-07
Crosschecked: 2016-12-02
Cited: 0
Clicked: 7219
Xiao-yu ZHANG. Application of direct adaptive fuzzy sliding mode control into a class of non-affine discrete nonlinear systems[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(12): 1331-1343.
@article{title="Application of direct adaptive fuzzy sliding mode control into a class of non-affine discrete nonlinear systems",
author="Xiao-yu ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="12",
pages="1331-1343",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500318"
}
%0 Journal Article
%T Application of direct adaptive fuzzy sliding mode control into a class of non-affine discrete nonlinear systems
%A Xiao-yu ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 12
%P 1331-1343
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500318
TY - JOUR
T1 - Application of direct adaptive fuzzy sliding mode control into a class of non-affine discrete nonlinear systems
A1 - Xiao-yu ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 12
SP - 1331
EP - 1343
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500318
Abstract: direct adaptive fuzzy sliding mode control design for discrete non-affine nonlinear systems is presented for trajectory tracking problems with disturbance. To obtain adaptiveness and eliminate chattering of sliding mode control, a dynamic fuzzy logical system is used to implement an equivalent control, in which the parameters are self-tuned online. Stability of the sliding mode control is validated using the Lyapunov analysis theory. The overall system is adaptive, asymptotically stable, and chattering-free. A numerical simulation and an application to a robotic arm with two degrees of freedom further verify the good performance of the control design.
[1]Allaoua, B., Laoufi, A., 2013. A novel sliding mode fuzzy control based on SVM for electric vehicles propulsion system. Energy Procedia, 36:120-129.
[2]Castillo-Toledo, B., di Gennaro, S., Loukianov, A.G., et al., 2008. Discrete time sliding mode control with application to induction motors. Automatica, 44(12):3036-3045.
[3]Chen, D., Liu, Y., Ma, X., et al., 2012a. Control of a class of fractional-order chaotic systems via sliding mode. Nonl. Dyn., 67(1):893-901.
[4]Chen, D., Zhang, R., Sprott, J.C., et al., 2012b. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonl. Dyn., 70(2):1549-1561.
[5]Corradini, M.L., Fossi, V., Giantomassi, A., et al., 2012. Discrete time sliding mode control of robotic manipulators: development and experimental validation. Contr. Eng. Pract., 20(8):816-822.
[6]Edwards, C., Spurgeon, S., 1998. Sliding Mode Control: Theory and Applications. CRC Press.
[7]Farhoud, A., Erfanian, A., 2014. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control. IEEE Trans. Neur. Syst. Rehabil. Eng., 22(3):533-542.
[8]Furuta, K., 1990. Sliding mode control of a discrete system. Syst. Contr. Lett., 14(2):145-152.
[9]Guo, L., Hung, J.Y., Nelms, R.M., 2011. Comparative evaluation of sliding mode fuzzy controller and PID controller for a boost converter. Electr. Power Syst. Res., 81(1):99-106.
[10]Ho, T.H., Ahn, K.K., 2012. Speed control of a hydraulic pressure coupling drive using an adaptive fuzzy sliding-mode control. IEEE/ASME Trans. Mechatron., 17(5):976-986.
[11]Hsu, C.F., Chung, I.F., Lin, C.M., 2009. Self-regulating fuzzy control for forward DC-DC converters using an 8-bit microcontroller. IET Power Electron., 2(1):1-12.
[12]Hwang, C.L., Wu, H.M., Shih, C.L., 2009. Fuzzy sliding-mode underactuated control for autonomous dynamic balance of an electrical bicycle. IEEE Trans. Contr. Syst. Technol., 17(3):658-670.
[13]Khandekar, A.A., Malwatkar, G.M., Patre, B.M., 2013. Discrete sliding mode control for robust tracking of higher order delay time systems with experimental application. ISA Trans., 52(1):36-44.
[14]Lee, J.X., Vukovich, G., 1997. Identification of nonlinear dynamic systems–-a fuzzy logic approach and experimental demonstrations. Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, p.1121-1126.
[15]Lewis, F.L., Dawson, D.M., Abdallah, C.T., 2006. Robot Manipulator Control: Theory and Practice. Marcel Dekker, Inc., USA.
[16]Lian, Y., Gómez, G., Masdemont, J.J., et al., 2014. Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control. Commun. Nonl. Sci. Numer. Simul., 19(10):3792-3807.
[17]Monsees, G., Scherpen, J.M.A., 2002. Adaptive switching gain for a discrete-time sliding mode controller. Int. J. Contr., 75(4):242-251.
[18]Morioka, H., Wada, K., Sabanovic, A., et al., 1995. Neural network based chattering free sliding mode control. Proc. 34th SICE Annual Conf., p.1303-1308.
[19]Pai, M.C., 2014. Discrete-time output feedback quasi-sliding mode control for robust tracking and model following of uncertain systems. J. Franklin Inst., 351(5):2623-2639.
[20]Pande, V.N., Mate, U.M., Kurode, S., 2013. Discrete sliding mode control strategy for direct real and reactive power regulation of wind driven DFIG. Electr. Power Syst. Res., 100:73-81.
[21]Poursamad, A., Davaie-Markazi, A.H., 2009. Robust adaptive fuzzy control of unknown chaotic systems. Appl. Soft Comput., 9(3):970-976.
[22]Reddy, G.D., Park, Y., Bandyopadhyay, B., et al., 2009. Discrete-time output feedback sliding mode control for spatial control of a large PHWR. Automatica, 45(9):2159-2163.
[23]Sarpturk, S.Z., Istefanopulos, Y., Kaynak, O., 1987. On the stability of discrete-time sliding mode control systems. IEEE Trans. Autom. Contr., 32(10):930-932.
[24]Shahraz, A., Boozarjomehry, R.B., 2009. A fuzzy sliding mode control approach for nonlinear chemical processes. Contr. Eng. Pract., 17(5):541-550.
[25]Sira-Ramirez, H., 1989. Nonlinear variable structure systems in sliding mode: the general case. IEEE Trans. Autom. Contr., 34(11):1186-1188.
[26]Utkin, V.I., 1977. Variable structure systems with sliding modes. IEEE Trans. Autom. Contr., 22(2):212-222.
[27]Wang, L., 1995. Design and analysis of fuzzy identifiers of nonlinear dynamic systems. IEEE Trans. Autom. Contr., 40(1):11-23.
[28]Wang, S., Yu, D., 2000. Error analysis in nonlinear system identification using fuzzy system. J. Softw., 11(4):447-452.
[29]Wang, W., Liu, X., 2010. Fuzzy sliding mode control for a class of piezoelectric system with a sliding mode state estimator. Mechatronics, 20(6):712-719.
[30]Yau, H.T., Wang, C.C., Hsieh, C.T., et al., 2011. Nonlinear analysis and control of the uncertain micro-electro-mechanical system by using a fuzzy sliding mode control design. Comput. Math. Appl., 61(8):1912-1916.
[31]Zhang, D.Q., Panda, S.K., 1999. Chattering-free and fast response sliding mode controller. IEE Proc. Contr. Theory Appl., 146(2):171-177.
[32]Zhang, X., 2009. Adaptive sliding mode-like fuzzy logic control for nonlinear systems. J. Commun. Comput., 6(1):53-60.
[33]Zhang, X., Guo, F., 2014. Sliding mode-like fuzzy logic control with boundary layer self-tuning for discrete nonlinear systems. Proc. 7th Int. Conf. on Intelligent Systems and Knowledge Engineering, p.479-490.
[34]Zhang, X., Su, H.Y., 2004. Sliding mode variable structure state norm control of SISO linear systems. Contr. Eng. China, 11(5):413-418 (in Chinese).
[35]Zhang, X., Chen, W., Shen, B., 2015. Direct adaptive fuzzy sliding mode control for a class of non-affine discrete nonlinear systems. Proc. 12th Int. Conf. on Fuzzy Systems and Knowledge Discovery, p.355-360.
[36]
Open peer comments: Debate/Discuss/Question/Opinion
<1>