Full Text:   <3145>

Summary:  <2130>

CLC number: TP273

On-line Access: 2017-03-10

Received: 2015-10-21

Revision Accepted: 2016-03-21

Crosschecked: 2017-02-28

Cited: 0

Clicked: 6548

Citations:  Bibtex RefMan EndNote GB/T7714


Guo-liang Tao


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.3 P.303-316


Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method

Author(s):  Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou

Affiliation(s):  The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   gltao@zju.edu.cn, czesh@zju.edu.cn, mengdeyuan8207@163.com, 21425044@zju.edu.cn

Key Words:  Parameter initialization, Adaptive robust control, Parallel mechanism, Pneumatic cylinders

Share this article to: More |Next Article >>>

Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 303-316.

@article{title="Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method",
author="Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method
%A Guo-liang Tao
%A Ce Shang
%A De-yuan Meng
%A Chao-chao Zhou
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 3
%P 303-316
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500353

T1 - Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method
A1 - Guo-liang Tao
A1 - Ce Shang
A1 - De-yuan Meng
A1 - Chao-chao Zhou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 3
SP - 303
EP - 316
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500353

A control algorithm for a 3-RPS parallel platform driven by pneumatic cylinders is discussed. All cylinders are controlled by proportional directional valves while the kinematic and dynamic properties of the system are modeled. The method of adaptive robust control is applied to the controller using a back-stepping approach and online parameter estimation. To compensate for the uncertainty and the influence caused by estimations, a fast dynamic compensator is integrated in the controller design. To prevent any influence caused by the load applied to the moving platform changing in a practical working situation, the identification of parameters is taken as the initialization of unknown parameters in the controller, which can improve the adaptability of the algorithm. Using these methods, the response rate of the parameter estimation and control performance were improved significantly. The adverse effects of load and restriction forces were eliminated by the initialization and online estimation. Experiments under different situations illustrated the effectiveness of the adaptive robust controller with parameter initialization, approaching average tracking errors of less than 1%.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Andrievsky, B., Kazunin, D.V., Kostygova, D.M., et al., 2014. Control of pneumatically actuated 6-DOF Stewart platform for driving simulator. Proc. 19th Int. Conf. on Methods and Models in Automation and Robotics, p.663-668.

[2]Atkeson, C.G., An, C.H., Hollerbach, J.M., 1985. Rigid body load identification for manipulators. Proc. 24th IEEE Conf. on Decision and Control, p.996-1002.

[3]Carneiro, J.F., de Almeida, F.G., 2007. Heat transfer evaluation of industrial pneumatic cylinders. {em Proc. Instit. Mech. Eng. Part I: J. Syst. Contr. Eng.}, 221(1):119-128.

[4]Chen, Z., Yao, B., Wang, Q.F., 2013a. Accurate motion control of linear motors with adaptive robust compensation of nonlinear electromagnetic field effect. IEEE/ASME Trans. Mechatron., 18(3):1122-1129.

[5]Chen, Z., Yao, B., Wang, Q.F., 2013b. Adaptive robust precision motion control of linear motors with integrated compensation of nonlinearities and bearing flexible modes. IEEE Trans. Ind. Inform., 9(2):965-973.

[6]Chen, Z., Yao, B., Wang, Q.F., 2015. $mu$-synthesis-based adaptive robust control of linear motor driven stages with high-frequency dynamics: a case study. IEEE/ASME Trans. Mechatron., 20(3):1482-1490.

[7]Cheng, Y.M., Chen, Y.S., 2013. An angle trajectory tracking for a 3-DOF pneumatic motion platform by the NI compact RIO embedded system. J. Mech. Eng. Autom., 3:14-21.

[8]Díaz-Rodríguez, M., Mata, V., Valera, Á., et al., 2010. A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mech. Mach. Theory, 45(9):1337-1356.

[9]Farhat, N., Mata, V., Page, Á., et al., 2008. Identification of dynamic parameters of a 3-DOF RPS parallel manipulator. Mech. Mach. Theory, 43(1):1-17.

[10]Girin, A., Plestan, F., Brun, X., et al., 2009. High-order sliding-mode controllers of an electropneumatic actuator: application to an aeronautic benchmark. IEEE Trans. Contr. Syst. Technol., 17(3):633-645.

[11]Goodwin, G.C., Mayne, D.Q., 1987. A parameter estimation perspective of continuous time model reference adaptive control. Automatica, 23(1):57-70.

[12]Grewal, K.S., Dixon, R., Pearson, J., 2011. Control design for a pneumatically actuated parallel link manipulator. Proc. 21st Int. Conf. on Systems Engineering, p.43-48.

[13]Grewal, K.S., Dixon, R., Pearson, J., 2012. LQG controller design applied to a pneumatic Stewart-Gough platform. Int. J. Autom. Comput., 9(1):45-53.

[14]Grotjahn, M., Heimann, B., Abdellatif, H., 2004. Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody Syst. Dynam., 11(3):273-294. href[doi:10.1023/B:MUBO.0000029426.05860.c2]

[15]Khayati, K., Bigras, P., Dessaint, L.A., 2009. LuGre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization. Mechatronics, 19(4):535-547.

[16]Kimura, T., Hara, S., Fujita, T., et al., 1997. Feedback linearization for pneumatic actuator systems with static friction. Contr. Eng. Pract., 5(10):1385-1394.

[17]Meng, D., Tao, G., Chen, J., et al., 2011. Modeling of a pneumatic system for high-accuracy position control. Proc. Int. Conf. on Fluid Power and Mechatronics, p.505-510.

[18]Meng, D., Tao, G., Zhu, X., 2013. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders. Int. J. Contr., 86(9):1620-1633.

[19]Merlet, J.P., 2002. Parallel Robots. Kluwer Academic Publishers, Norwell, MA, USA.

[20]Pfreundschuh, G.H., Kumar, V., Sugar, T.G., 1991. Design and control of a 3-DOF in-parallel actuated manipulator. IEEE Int. Conf. on Robotics and Automation, p.1659-1664.

[21]Pradipta, J., Klünder, M., Weickgenannt, M., et al., 2013. Development of a pneumatically driven flight simulator Stewart platform using motion and force control. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.158-163.

[22]Ramsauer, M., Kastner, M., Ferrara, P., et al., 2012. A pneumatically driven Stewart platform used as fault detection device. Appl. Mech. Mater., 186:227-233. href[doi:10.4028/www.scientific.net/AMM.186.227]

[23]Richardson, R., Plummer, A.R., Brown, M.D., 2001. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity. IEEE Trans. Contr. Syst. Technol., 9(2):330-334.

[24]Schulte, H., Hahn, H., 2004. Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Contr. Eng. Pract., 12(5):639-650.

[25]Smaoui, M., Brun, X., Thomasset, D., 2006. A study on tracking position control of an electropneumatic system using backstepping design. Contr. Eng. Pract., 14(8):923-933.

[26]Tao, G., Zuo, H., 2014. Cross-coupling adaptive robust control study of single/multiple 3-DOF pneumatic parallel platforms. Proc. 9th JFPS Int. Symp. on Fluid Power.

[27]Wang, J., Fan, L., Hu, L., 2005. Positional forward solution and numeric-symbolic solution of singular configuration analysis for 3-RPS parallel platform mechanism. J. Mach. Des., 22(5):15-19 (in Chinese).

[28]Yao, B., Tomizuka, M., 1997. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 33(5):893-900.

[29]Yao, J., Jiao, Z., Ma, D., 2014a. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans. Ind. Electron., 61(11):6285-6293.

[30]Yao, J., Jiao, Z., Ma, D., et al., 2014b. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans. Mechatron., 19(2):633-641.

[31]Zheng, K.J., Cui, P., Guo, H.J., 2011. Kinematics and static characteristics analysis of 3-RPS parallel mechanism. J. Mach. Des., 28(9) (in Chinese).

[32]Zhu, X., Tao, G., Yao, B., et al., 2008. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica, 44(9):2248-2257.

[33]Zhu, X., Tao, G., Yao, B., et al., 2009. Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles. IEEE Trans. Contr. Syst. Technol., 17(3):576-588.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE