Full Text:   <2521>

Summary:  <1931>

CLC number: TP181; O22

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-03-15

Cited: 2

Clicked: 6563

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Robert Wójcik

http://orcid.org/0000-0003-3860-7011

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.4 P.338-347

http://doi.org/10.1631/FITEE.1500359


Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach


Author(s):  Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak

Affiliation(s):  Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg 9220, Denmark; more

Corresponding email(s):   izabela@m-tech.aau.dk, robert.wojcik@pwr.wroc.pl, bocewicz@ie.tu.koszalin.pl, z.banaszak@wz.pw.edu.pl

Key Words:  Automated guided vehicles (AGVs), Scheduling, Multimodal process, Fuzzy constraints, Optimization


Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(4): 338-347.

@article{title="Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach",
author="Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="4",
pages="338-347",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500359"
}

%0 Journal Article
%T Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach
%A Izabela Nielsen
%A Robert Wójcik
%A Grzegorz Bocewicz
%A Zbigniew Banaszak
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 4
%P 338-347
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500359

TY - JOUR
T1 - Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach
A1 - Izabela Nielsen
A1 - Robert Wójcik
A1 - Grzegorz Bocewicz
A1 - Zbigniew Banaszak
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 4
SP - 338
EP - 347
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500359


Abstract: 
We present an extension of the resource-constrained multi-product scheduling problem for an automated guided vehicle (AGV) served flow shop, where multiple material handling transport modes provide movement of work pieces between machining centers in the multimodal transportation network (MTN). The multimodal processes behind the multi-product production flow executed in an MTN can be seen as processes realized by using various local periodically functioning processes. The considered network of repetitively acting local transportation modes encompassing MTN’s structure provides a framework for multimodal processes scheduling treated in terms of optimization of the AGVs fleet scheduling problem subject to fuzzy operation time constraints. In the considered case, both production takt and operation execution time are described by imprecise data. The aim of the paper is to present a constraint propagation (CP) driven approach to multi-robot task allocation providing a prompt service to a set of routine queries stated in both direct and reverse way. Illustrative examples taking into account an uncertain specification of robots and workers operation time are provided.

模糊操作时间约束下的多模过程优化:声明式建模方法

目的:研究采用自动导引运输车(AGVs)服务的并行流水车间多产品调度问题,实现共享资源最优分配。
创新点:将多产品生产流水线上的多模过程调度问题建模为模糊操作时间约束下的自动导引运输车调度问题,提出了一种约束传播(CP)驱动的多机器人任务分配方案。
方法:首先介绍了AGVs的应用领域,以及近年来关于其调度问题的研究成果。然后用数学理论阐述了多模过程原型,包括多模型运输网络(MTN)、并发流水循环过程(SCCPs)系统和约束编程。最后对两类SCCP优化问题(分析analysis和合成synthesis)进行约束编程并优化,最后分别给出了不确定计算实验分析与验证。
结论:本文所提方法为本地性能评估和由此支持的多模过程性能评估提供了统一的方法。

关键词:自动导引运输车(AGVs);调度;多模过程;模糊约束;优化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abara, J., 1989. Applying integer linear programming to the fleet assignment problem. Interfaces, 19(4):20-28. http://www.jstor.org/stable/25061245

[2]Bocewicz, G., Nielsen, I., Banaszak, Z., 2014. Automated guided vehicles fleet match-up scheduling with production flow constraints. Eng. Appl. Artif. Intell., 30:49-62.

[3]El Moudani, W., Mora-Camino, F., 2000. A dynamic approach for aircraft assignment and maintenance scheduling by airlines. J. Air Transp. Manag., 6(4):233-237.

[4]Hall, N.G., Sriskandarajah, C., Ganesharajah, T., 2001. Operational decisions in AGV-served flowshop loops: fleet sizing and decomposition. Ann. Oper. Res., 107:189-209.

[5]Lu, S.P., Kong, X.T.R., Luo, H., et al., 2013. Dynamic scheduling of AGVS for tobacco automatic warehouse: a case study. Proc. Int. Conf. on Computers and Industrial Engineering, p.725-733.

[6]Polak, M., Majdzik, P., Banaszak, Z., et al., 2004. The performance evaluation tool for automated prototyping of concurrent cyclic processes. Fundam. Inform., 60(1-4):269-289. http://dl.acm.org/citation.cfm?id=2370556.2370576

[7]Relich, M., Jakabova, M., 2013. A decision support tool for project portfolio management with imprecise data. Proc. 10th Int. Conf. on Strategic Management and Its Support by Information Systems, p.164-172.

[8]Sitek, P., Wikarek, J., 2015. A hybrid framework for the modelling and optimisation of decision problems in sustainable supply chain management. Int. J. Prod. Res., 53(21):6611-6628.

[9]von Kampmeyer, T., 2006. Cyclic Scheduling Problems. PhD Dissertation, Mathematik/Informatik, Universität Osnabrück, Gernamy.

[10]Wójcik, R., Bzdyra, K., Crisostomo, M.M., et al., 2005. Constraint programming approach to design of deadlock-free schedules in concurrent production systems. Proc. 10th IEEE Conf. on Emerging Technologies and Factory Automation, p.135-142.

[11]Wójcik, R., Nielsen, I., Bocewicz, G., et al., 2015. Multimodal processes optimization subject to fuzzy operation time constraints. Proc. 12th Int. Conf. on Distributed Computing and Artificial Intelligence, p.313-322.

[12]Zaremba, M.B., Jedrzejek, K.J., Banaszak, Z.A., 1998. Design of steady-state behaviour of concurrent repetitive processes: an algebraic approach. IEEE Trans. Syst. Man Cybern. A, 28(2):199-212.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE