CLC number: TP391
On-line Access: 2017-05-24
Received: 2015-11-26
Revision Accepted: 2016-03-24
Crosschecked: 2017-04-22
Cited: 0
Clicked: 11078
Chun-xue Wang, Li-gang Liu. Feature matching using quasi-conformal maps[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(5): 644-657.
@article{title="Feature matching using quasi-conformal maps",
author="Chun-xue Wang, Li-gang Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="5",
pages="644-657",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500411"
}
%0 Journal Article
%T Feature matching using quasi-conformal maps
%A Chun-xue Wang
%A Li-gang Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 5
%P 644-657
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500411
TY - JOUR
T1 - Feature matching using quasi-conformal maps
A1 - Chun-xue Wang
A1 - Li-gang Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 5
SP - 644
EP - 657
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500411
Abstract: We present a fully automatic method for finding geometrically consistent correspondences while discarding outliers from the candidate point matches in two images. Given a set of candidate matches provided by scale-invariant feature transform (SIFT) descriptors, which may contain many outliers, our goal is to select a subset of these matches retaining much more geometric information constructed by a mapping searched in the space of all diffeomorphisms. This problem can be formulated as a constrained optimization involving both the Beltrami coefficient (BC) term and quasi-conformal map, and solved by an efficient iterative algorithm based on the variable splitting method. In each iteration, we solve two subproblems, namely a linear system and linearly constrained convex quadratic programming. Our algorithm is simple and robust to outliers. We show that our algorithm enables producing more correct correspondences experimentally compared with state-of-the-art approaches.
[1]Belongie, S., Malik, J., Puzicha, J., 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Patt. Anal. Mach. Intell., 24(4):509-522.
[2]Bers, L., 1977. Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Am. Math. Soc., 83(6):1083-1100.
[3]Boyd, S., Parikh, N., Chu, E., et al., 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1-122.
[4]Chui, H., Rangarajan, A., 2003. A new point matching algorithm for non-rigid registration. Comput. Vis. Image Understand., 89(2-3):114-141.
[5]Daripa, P., 1991. On a numerical method for quasi-conformal grid generation. J. Comput. Phys., 96(1):229-236.
[6]Daripa, P., 1992. A fast algorithm to solve nonhomogeneous Cauchy-Reimann equations in the complex plane. SIAM J. Sci. Stat. Comput., 13(6):1418-1432.
[7]Duchenne, O., Bach, F., Kweon, I.S., et al., 2011. A tensor-based algorithm for high-order graph matching. IEEE Trans. Patt. Anal. Mach. Intell., 33(12):2383-2395.
[8]Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395.
[9]Gardiner, F.P., Lakic, N., 2000. Quasiconformal Teichmüller Theory. American Mathematical Society, Providence, USA.
[10]Gu, X.D., Yau, S.T., 2008. Computational Conformal Geometry. International Press, Somerville, MA, USA.
[11]Heider, P., Pierre-Pierre, A., Li, R., et al., 2011. Local shape descriptors, a survey and evaluation. Eurographics Workshop on 3D Object Retrieval, p.1-8.
[12]Hinton, G.E., Williams, C.K.I., Revow, M.D., 1991. Adaptive elastic models for hand-printed character recognition. 4th Int. Conf. on Neural Information Processing Systems, p.512-519.
[13]Ho, K.T., Lui, L.M., 2016. QCMC: quasi-conformal parameterizations for multiply-connected domains. Adv. Comput. Math., 42(2):279-312.
[14]Jian, B., Vemuri, B.C., Marroquin, J.L., 2005. Robust nonrigid multimodal image registration using local frequency maps. Biennial Int. Conf. on Information Processing in Medical Imaging, p.504-515.
[15]Lam, K.C., Lui, L.M., 2014. Landmark and intensity-based registration with large deformations via quasi-conformal maps. SIAM J. Imag. Sci., 7(4):2364-2392.
[16]Lazebnik, S., Schmid, C., Ponce, J., 2004. Semi-local affine parts for object recognition. British Machine Vision Conf., p.779-788.
[17]Lazebnik, S., Schmid, C., Ponce, J., 2005. A maximum entropy framework for part-based texture and object recognition. ICCV, p.832-838.
[18]Lehto, O., Virtanen, K.I., Lucas, K.W., 1973. Quasiconformal Mappings in the Plane. Springer New York.
[19]Li, Y., Xie, X., Yang, Z., 2015. Alternating direction method of multipliers for solving dictionary learning. Commun. Math. Stat., 3:37-55.
[20]Lipman, Y., Yagev, S., Poranne, R., et al., 2014. Feature matching with bounded distortion. ACM Trans. Graph., 33(3):26.
[21]Lui, L.M., Ng, T.C., 2015. A splitting method for diffeomorphism optimization problem using Beltrami coefficients. J. Sci. Comput., 63(2):573-611.
[22]Lui, L.M., Wong, T.W., Zeng, W., et al., 2012. Optimization of surface registrations using Beltrami holomorphic flow. J. Sci. Comput., 50(3):557-585.
[23]Mastin, C.W., Thompson, J.F., 1984. Quasiconformal mappings and grid generation. SIAM J. Sci. Stat. Comput., 5(2):305-310.
[24]Montagnat, J., Delingette, H., Ayache, N., 2001. A review of deformable surfaces: topology, geometry and deformation. Image Vis. Comput., 19(14):1023-1040.
[25]Nealen, A., Müller, M., Keiser, R., et al., 2006. Physically based deformable models in computer graphics. Comput. Graph. For., 25(4):809-836.
[26]Sasaki, Y., 2007. The Truth of the F-measure. School of Computer Science, University of Manchester.
[27]Taimouri, V., Hua, J., 2014. Deformation similarity measurement in quasi-conformal shape space. Graph. Models, 76(2):57-69.
[28]Tuytelaars, T., Mikolajczyk, K., 2008. Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis., 3(3):177-280.
[29]van Kaick, O., Zhang, H., Hamarneh, G., et al., 2011. A survey on shape correspondence. Comput. Graph. Forum, 30(6):1681-1707.
[30]Vedaldi, A., Fulkerson, B., 2010. Vlfeat: an open and portable library of computer vision algorithms. Proc. 18th ACM Int. Conf. on Multimedia, p.1469-1472.
[31]Wang, S., Wang, Y., Jin, M., et al., 2007. Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Trans. Patt. Anal. Mach. Intell., 29(7):1209-1220.
[32]Weber, O., Myles, A., Zorin, D., 2012. Computing extremal quasiconformal maps. Comput. Graph. For., 31(5):1679-1689.
[33]Wright, S.J., 2015. Coordinate descent algorithms. Math. Program., 151(1):3-34.
[34]Yezzi, A., Mennucci, A., 2005. Conformal metrics and true ”gradient flows” for curves. ICCV, p.913-919.
[35]Zeng, W., Gu, X.D., 2011. Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. CVPR, p.2457-2464.
[36]Zeng, W., Hua, J., Gu, X., 2009. Symmetric conformal mapping for surface matching and registration. Int. J. CAD/CAM, 9(1):103-109.
[37]Zhao, Z., Feng, X., Teng, S., et al., 2012. Multiscale point correspondence using feature distribution and frequency domain alignment. Math. Probl. Eng., 2012:382369.
Open peer comments: Debate/Discuss/Question/Opinion
<1>