Full Text:   <1907>

Summary:  <1259>

CLC number: TP277

On-line Access: 2018-12-14

Received: 2016-08-30

Revision Accepted: 2017-01-23

Crosschecked: 2018-11-27

Cited: 0

Clicked: 4475

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yi-xiang Huang

http://orcid.org/0000-0001-8384-1566

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.11 P.1352-1361

http://doi.org/10.1631/FITEE.1601512


Intrinsic feature extraction using discriminant diffusion mapping analysis for automated tool wear evaluation


Author(s):  Yi-xiang Huang, Xiao Liu, Cheng-liang Liu, Yan-ming Li

Affiliation(s):  State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China; more

Corresponding email(s):   huang.yixiang@sjtu.edu.cn

Key Words:  Tool condition monitoring, Manifold learning, Dimensionality reduction, Diffusion mapping analysis, Intrinsic feature extraction


Yi-xiang Huang, Xiao Liu, Cheng-liang Liu, Yan-ming Li. Intrinsic feature extraction using discriminant diffusion mapping analysis for automated tool wear evaluation[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(11): 1352-1361.

@article{title="Intrinsic feature extraction using discriminant diffusion mapping analysis for automated tool wear evaluation",
author="Yi-xiang Huang, Xiao Liu, Cheng-liang Liu, Yan-ming Li",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="11",
pages="1352-1361",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601512"
}

%0 Journal Article
%T Intrinsic feature extraction using discriminant diffusion mapping analysis for automated tool wear evaluation
%A Yi-xiang Huang
%A Xiao Liu
%A Cheng-liang Liu
%A Yan-ming Li
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 11
%P 1352-1361
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601512

TY - JOUR
T1 - Intrinsic feature extraction using discriminant diffusion mapping analysis for automated tool wear evaluation
A1 - Yi-xiang Huang
A1 - Xiao Liu
A1 - Cheng-liang Liu
A1 - Yan-ming Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 11
SP - 1352
EP - 1361
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601512


Abstract: 
We present a method of discriminant diffusion maps analysis (DDMA) for evaluating tool wear during milling processes. As a dimensionality reduction technique, the DDMA method is used to fuse and reduce the original features extracted from both the time and frequency domains, by preserving the diffusion distances within the intrinsic feature space and coupling the features to a discriminant kernel to refine the information from the high-dimensional feature space. The proposed DDMA method consists of three main steps: (1) signal processing and feature extraction; (2) intrinsic dimensionality estimation; (3) feature fusion implementation through feature space mapping with diffusion distance preservation. DDMA has been applied to current signals measured from the spindle in a machine center during a milling experiment to evaluate the tool wear status. Compared with the popular principle component analysis method, DDMA can better preserve the useful intrinsic information related to tool wear status. Thus, two important aspects are highlighted in this study: the benefits of the significantly lower dimension of the intrinsic features that are sensitive to tool wear, and the convenient availability of current signals in most industrial machine centers.

基于判别扩散映射分析的内蕴特征提取方法在刀具磨损评估中的应用

摘要:针对铣削加工刀具磨损评估,提出一种基于判别扩散映射分析的方法。判别扩散映射分析(discriminant diffusion maps analysis,DDMA)用于时频域特征提取融合与维度缩减。通过保持内蕴特征空间的扩散距离,耦合时频域特征和判别内核,提取有效信息。该方法包含3个步骤:(1)信号处理与特征提取;(2)内蕴维度估计;(3)基于扩散距离保持的特征融合实现。将该方法应用于数控加工中心主轴驱动电流信号,评估刀具磨损状态。与常见主成分分析方法相比,该方法能更好保持刀具磨损状态相关的有用内蕴信息,大大降低与刀具磨损相关的特征维度,并可直接应用于大多数工业数控加工中心,方便获取电流信号实际情况。

关键词:刀具状态监测;流形学习;降维;扩散映射分析;内蕴特征提取

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abu-Mahfouz I, 2003. Drilling wear detection and classification using vibration signals and artificial neural network. Int J Mach Tools Manuf, 43(7):707-720.

[2]Agogino A, Goebel K, 2007. Milling Data Set. Available from https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#milling

[3]Bingham E, Hyvärinen A, 2000. A fast fixed-point algorithm for independent component analysis of complex valued signals. Int J Neur Syst, 10(1):1-8.

[4]Borovkova S, Burton R, Dehling H, 1999. Consistency of the Takens estimator for the correlation dimension. Ann Appl Prob, 9(2):376-390.

[5]Camastra F, 2003. Data dimensionality estimation methods: a survey. Patt Recogn, 36(12):2945-2954.

[6]Camastra F, Vinciarelli A, 2002. Estimating the intrinsic dimension of data with a fractal-based method. IEEE Trans Patt Anal Mach Intell, 24(10):1404-1407.

[7]Coifman RR, Lafon S, 2006. Diffusion maps. Appl Comput Harmon Anal, 21(1):5-30.

[8]D’Addona DM, Teti R, 2013. Image data processing via neural networks for tool wear prediction. Proc CIRP, 12:252- 257.

[9]D’Addona DM, Matarazzo D, Ullah AMMS, et al., 2015. Tool wear control through cognitive paradigms. Proc CIRP, 33: 221-226.

[10]D’Addona DM, Ullah AMMS, Matarazzo D, 2017. Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. J Intell Manuf, 28(6):1285-1301.

[11]Dimla EDS, 2000. Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods. Int J Mach Tools Manuf, 40(8):1073-1098.

[12]Franco-Gasca LA, Herrera-Ruiz G, Peniche-Vera R, et al., 2006. Sensorless tool failure monitoring system for drilling machines. Int J Mach Tools Manuf, 46(3-4):381- 386.

[13]Goebel K, Yan W, 2000. Feature selection for tool wear diagnosis using soft computing techniques. ASME Int Mechanical Engineering Congress and Exposition, p.157-163.

[14]Harmouche J, Delpha C, Diallo D, 2014. Linear discriminant analysis for the discrimination of faults in bearing balls by using spectral features. Int Conf on Green Energy, p.182-187.

[15]Hein M, Audibert JY, 2005. Intrinsic dimensionality estimation of submanifolds in ℝd. Int Conf on Machine Learning, p.289-296.

[16]Huang SN, Tan KK, Wong YS, et al., 2007. Tool wear detection and fault diagnosis based on cutting force monitoring. Int J Mach Tools Manuf, 47(3-4):444-451.

[17]Huang YX, Zha XF, Lee J, et al., 2013. Discriminant diffusion maps analysis: a robust manifold learner for dimensionality reduction and its applications in machine condition monitoring and fault diagnosis. Mech Syst Signal Process, 34(1-2):277-297.

[18]ISO, 1989. Tool life testing in milling—part 1: face milling, ISO 8688-1:1989. International Organization for Standardization, Geneva.

[19]Jiang QS, Jia MP, Hu JZ, et al., 2009. Machinery fault diagnosis using supervised manifold learning. Mech Syst Signal Process, 23(7):2301-2311.

[20]Karam S, Centobelli P, D’Addona DM, et al., 2016. Online prediction of cutting tool life in turning via cognitive decision making. Proc CIRP, 41:927-932.

[21]Korn F, Pagel BU, Faloutsos C, 2001. On the “dimensionality curse” and the “self-similarity blessing”. IEEE Trans Knowl Data Eng, 13(1):96-111.

[22]Kunze H, Torre DL, Mendivil F, et al., 2012. Fractal-Based Methods in Analysis. Springer, New York, USA, p.1-16.

[23]Lee DE, Hwang I, Valente CMO, et al., 2006. Precision manufacturing process monitoring with acoustic emission. Int J Mach Tools Manuf, 46(2):176-188.

[24]Li XL, Tso SK, 1999. Drill wear monitoring based on current signals. Wear, 231(2):172-178.

[25]Nadler B, Lafon S, Coifman RR, et al., 2006. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl Comput Harmon Anal, 21(1):113-127.

[26]Oh YT, Kwon WT, Chu CN, 2004. Drilling torque control using spindle motor current and its effect on tool wear. Int J Adv Manuf Technol, 24(5-6):327-334.

[27]Scheffer C, Heyns PS, 2001. Wear monitoring in turning operations using vibration and strain measurements. Mech Syst Signal Process, 15(6):1185-1202.

[28]Sipola T, Ristaniemi T, Averbuch A, 2014. Gear classification and fault detection using a diffusion map framework. Patt Recogn Lett, 53:53-61.

[29]Sortino M, 2003. Application of statistical filtering for optical detection of tool wear. Int J Mach Tools Manuf, 43(5): 493-497.

[30]Su JC, Huang CK, Tarng YS, 2006. An automated flank wear measurement of microdrills using machine vision. J Mater Process Technol, 180(1-3):328-335.

[31]Sweldens W, 1998. The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal, 29(2): 511-546.

[32]Yao CW, Chien YX, 2014. A diagnosis method of wear and tool life for an endmill by ultrasonic detection. J Manuf Syst, 33(1):129-138.

[33]Young HT, 1996. Cutting temperature responses to flank wear. Wear, 201(1-2):117-120.

[34]Zhou JH, Pang CK, Lewis FL, et al., 2009. Intelligent diagnosis and prognosis of tool wear using dominant feature identification. IEEE Trans Ind Inform, 5(4):454-464.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE