CLC number: TP391
On-line Access: 2018-01-12
Received: 2016-06-21
Revision Accepted: 2016-09-25
Crosschecked: 2017-11-23
Cited: 1
Clicked: 9084
Hao-wei Zhang, Jun-wei Xie, Wen-long Lu, Chuan Sheng, Bin-feng Zong. A scheduling method based on a hybrid genetic particle swarm algorithm for multifunction phased array radar[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1806-1816.
@article{title="A scheduling method based on a hybrid genetic particle swarm algorithm for multifunction phased array radar",
author="Hao-wei Zhang, Jun-wei Xie, Wen-long Lu, Chuan Sheng, Bin-feng Zong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1806-1816",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601358"
}
%0 Journal Article
%T A scheduling method based on a hybrid genetic particle swarm algorithm for multifunction phased array radar
%A Hao-wei Zhang
%A Jun-wei Xie
%A Wen-long Lu
%A Chuan Sheng
%A Bin-feng Zong
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1806-1816
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601358
TY - JOUR
T1 - A scheduling method based on a hybrid genetic particle swarm algorithm for multifunction phased array radar
A1 - Hao-wei Zhang
A1 - Jun-wei Xie
A1 - Wen-long Lu
A1 - Chuan Sheng
A1 - Bin-feng Zong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1806
EP - 1816
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601358
Abstract: A hybrid optimization approach combining a particle swarm algorithm, a genetic algorithm, and a heuristic interleaving algorithm is proposed for scheduling tasks in the multifunction phased array radar. By optimizing parameters using chaos theory, designing the dynamic inertia weight for the particle swarm algorithm as well as introducing crossover operation and mutation operation of the genetic algorithm, both the efficiency and exploration ability of the hybrid algorithm are improved. Under the frame of the intelligence algorithm, the heuristic interleaving scheduling algorithm is presented to further use the time resource of the task waiting duration. A large-scale simulation demonstrates that the proposed algorithm is more robust and efficient than existing algorithms.
[1]Akhshabi, M., Tavakkoli-Moghaddam, R., Rahnamay-Roodposhti, F., 2014. A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time. Int. J. Adv. Manuf. Technol., 70(5-8):1181-1188.
[2]Butler, J.M., 1998. Tracking and Control in Multi-function Radar. PhD Thesis, UCL University of London, London.
[3]Chen, J., Tian, Z., Wang, L., et al., 2011. Adaptive simultaneous multi-beam dwell scheduling algorithm for multifunction phased array radars. J. Inform. Comput. Sci., 8(14):3051-3061.
[4]Cheng, T., He, Z.S., Tang, T., 2008. Dwell scheduling algorithm for multifunction phased array radars based on the scheduling gain. J. Syst. Eng. Electron., 19(3):479-485.
[5]Cheng, T., He, Z.S., Li, H.Y., 2009a. Adaptive dwell scheduling for digital array radar based on online pulse interleaving. Chin. J. Electron., 18(3):574-578.
[6]Cheng, T., He, Z.S., Tang, T., 2009b. Novel radar dwell scheduling algorithm based on pulse interleaving. J. Syst. Eng. Electron., 20(2):247-253.
[7]de Jong, J.L., van Norden, W.L., 2007. Application of hybrid metaheuristics in sensor management. Aerosp. Sci. Technol., 11(4):295-302.
[8]Galati, G., Emilio, G.P., 2015. Scheduling methods for a conformal, phased array multifunction radar. Proc. 2nd Int. Conf. on Advances in Information Processing and Communication Technology, p.103-108.
[9]Galati, G., Madia, F., Carta, P., et al., 2015a. Time for a change in phased array radar architectures–Part I: planar vs. conformal arrays. Proc. 16th Int. Radar Symp., p.912-917.
[10]Galati, G., Madia, F., Carta, P., et al., 2015b. Time for a change in phased array radar architectures–Part II: the d-Radar. Proc. Int. Radar Symp., p.24-26.
[11]Ghosh, S., Hansen, J., Rajkumar, R., et al., 2004. Integrated resource management and scheduling with multi-resource constraints. Proc. 25th IEEE Int. Real-Time Systems Symp., p.12-22.
[12]Huizing, A.G., Bloemen, A.A.F., 1996. An efficient scheduling algorithm for a multifunction radar. IEEE Int. Symp. on Phased Array Systems and Technology, p.359-364.
[13]Jiménez, M.I., Izquierdo, A., Villacorta, J.J., et al., 2009. Analysis and design of multifunction radar task schedulers based on queue. Proc. 28th Digital Avionics Systems Conf., p.295-302.
[14]Jiménez, M.I., Val, L.D., Villacorta, J.J., et al., 2012. Design of task scheduling process for a multifunction radar. IET Radar Sonar Navig., 6(5):341-347.
[15]Kuo, T.W., Chao, Y.S., Kuo, C.F., et al., 2005. Real-time dwell scheduling of component-oriented phased array radars. IEEE Trans. Comput., 54(1):47-60.
[16]Liu, L.L., Hu, R.S., Hu, X.P., et al., 2015. A hybrid PSO-GA algorithm for job shop scheduling in machine tool production. Int. J. Prod. Res., 53(19):5755-5781.
[17]Lu, J.B., Hu, W.D., Yu, W.X., 2006. Study on real-time task scheduling of multifunction phased array radars. Acta Electron. Sin., 34(4):732-736 (in Chinese).
[18]Lu, J.B., Xiao, H., Xi, Z.M., et al., 2011. Multifunction phased array radar resource management: real-time scheduling algorithm. J. Comput. Inform. Syst., 7(2):385-393.
[19]Lu, J.B., Xiao, H., Xi, Z.M., et al., 2013. Phased array radar resource management: task scheduling and performance evaluation. J. Comput. Inform. Syst., 9(3):1131-1138.
[20]Mir, H.S., Abdelaziz, F.B., 2012. Cyclic task scheduling for multifunction radar. IEEE Trans. Autom. Sci. Eng., 9(3): 529-537.
[21]Mir, H.S., Guitouni, A., 2014. Variable dwell time task scheduling for multifunction radar. IEEE Trans. Autom. Sci. Eng., 11(2):463-472.
[22]Orman, A.J., Potts, C.N., Shahani, A.K., et al., 1996. Scheduling for a multifunction phased array radar system. Eur. J. Oper. Res., 90(1):13-25
[23]Ott, E., Grebogi, C., Yorke, J.A., 1990. Controlling chaos.
[24]Phys. Rev. Lett., 64(11):1196-1199.
[25]Reinoso-Rondinel, R., Yu, T.Y., Torres, S., 2010. Multifunction phased-array radar: time balance scheduler for adaptive weather sensing. J. Atmos. Ocean. Technol., 27(11): 1854-1867.
[26]Tian, G.D., Ren, Y.P., Zhou, M.C., 2016. Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm. IEEE Trans. Intell. Transp. Syst., 17(11):3009-3021.
[27]Wang, S.J., He, J., Wang, B., et al., 2014. Research on adaptive scheduling algorithm based on improved genetic algorithm for multifunctional phased array radar. Int. Conf. on Future Computer and Communication Engineering, p.24-28.
[28]Zeng, G., Lu, J.B., Hu, W.D., 2004a. Research on adaptive scheduling algorithm for multifunction Akhshabi, M., radar. Mod. Radar, 26(6):14-18 (in Chinese).
[29]Zeng, G., Hu, W.D., Lu, J.B., et al., 2004b. The simulation on adaptive scheduling for multifunction phased array radars. J. Syst. Simul., 16(9):2026-2029 (in Chinese).
[30]Zhang, H.W., Xie, J.W., Sheng, C., 2016. Scheduling method for phased array radar over chaos adaptively genetic algorithm. Proc. 6th Int. Conf. on Information Science and Technology, p.111-116.
[31]Zhou, Y., Wang, G.Y., Wang, X.S., et al., 2006. Optimal scheduling using hybrid GA with heuristic rules for phased array radar. Syst. Eng. Electron., 28(7):992-996, 1005 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>