CLC number: O436
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-06-08
Cited: 0
Clicked: 5911
Chao Fang, Yang Xiang, Ke-qi Qi. A general method of designing phase-shifting algorithms for grating lateral shearing interferometry[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(6): 809-814.
@article{title="A general method of designing phase-shifting algorithms for grating lateral shearing interferometry",
author="Chao Fang, Yang Xiang, Ke-qi Qi",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="6",
pages="809-814",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601692"
}
%0 Journal Article
%T A general method of designing phase-shifting algorithms for grating lateral shearing interferometry
%A Chao Fang
%A Yang Xiang
%A Ke-qi Qi
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 6
%P 809-814
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601692
TY - JOUR
T1 - A general method of designing phase-shifting algorithms for grating lateral shearing interferometry
A1 - Chao Fang
A1 - Yang Xiang
A1 - Ke-qi Qi
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 6
SP - 809
EP - 814
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601692
Abstract: We propose a general method of designing phase-shifting algorithms for grating lateral shearing interferometry. The algorithms compensate for the zeroth-order effect error and phase-shifting error in varying degrees. We derive a general expression of the phase-shifting algorithm in grating lateral shearing interferometer and introduce the corresponding design method. Based on the expression and method, four phase-shifting algorithms are designed with different phase-shifting errors to obtain high measurement accuracy. A new 13-frame phase-shifting algorithm is designed and simulated with a large zeroth-order effect. Simulation results verify the general expression and the corresponding design method.
[1]Bai F, Wang X, Huang K, et al., 2013. Analysis of spatial resolution and pinhole size for single-shot point-diffraction interferometer using in closed-loop adaptive optics. Opt Commun, 297:27-31.
[2]Bueno JM, Acosta E, Schwarz C, et al., 2010. Wavefront measurements of phase plates combining a point-diffraction interferometer and a Hartmann-Shack sensor. Appl Opt, 49(3):450-456.
[3]Dai F, Li J, Wang X, et al., 2016. Exact two-dimensional zonal wavefront reconstruction with high spatial resolution in lateral shearing interferometry. Opt Commun, 367:264-273.
[4]Fang C, Xiang Y, Qi K, et al., 2013. An 11-frame phase shifting algorithm in lateral shearing interferometry. Opt Expr, 21(23):28325-28333.
[5]Fujii T, Kougo J, Mizuno Y, et al., 2003. Portable phase measuring interferometer using Shack-Hartmann method. Proc SPIE, 5038:726-732.
[6]Gao P, Harder I, Nercissian V, et al., 2010. Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy. Opt Lett, 35(5):712-714.
[7]Goldberg KA, Naulleau P, Denham P, et al., 2004. EUV interferometric testing and alignment of the 0.3-NA MET optic. Proc SPIE, 5374:64-73.
[8]Hasegawa M, Ouchi C, Hasegawa T, et al., 2004. Recent progress of EUV wave-front metrology in EUVA. Proc SPIE, 5533:27-36.
[9]Hasegawa T, Ouchi C, Hasegawa M, et al., 2004. EUV wavefront metrology system in EUVA. Proc SPIE, 5374:797-807.
[10]Lee SH, Naulleau P, Goldberg KA, et al., 2000. Phase-shifting point-diffraction interferometry at 193 nm. Appl Opt, 39(31):5768-5772.
[11]Li J, Gong Y, Chen H, et al., 2015. Wave-front reconstruction with Hartmann-Shack sensor using a phase-retrieval method. Opt Commun, 336:127-133.
[12]Miyakawa R, Naulleau P, Goldberg K, 2009. Analysis of systematic errors in lateral shearing interferometry for EUV optical testing. Proc SPIE, 7272:72721V.
[13]Schreiber H, Schwider J, 1997. Lateral shearing interferometer based on two Ronchi gratings in series. Appl Opt, 36(22): 5321-5324.
[14]Takeda M, Kobayashi S, 1984. Lateral aberration measurements with a digital Talbot interferometer. Appl Opt, 23(11):1760-1764.
[15]Wang F, Wang X, Ma M, et al., 2006. Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask. Appl Opt, 45(2):281-287.
[16]Zhu Y, Gemma T, 2001. Method for designing error-compensating phase-calculation algorithms for phase-shifting interferometry. Appl Opt, 40(25):4540-4546.
[17]Zhu Y, Sugisakia K, Ouchia C, et al., 2004. Lateral shearing interferometer for EUVL: theoretical analysis and experiment. Proc SPIE, 5374:824-832.
[18]Zhu Y, Sugisaki K, Okada, M, et al., 2007. Wavefront measurement interferometry at the operational wavelength of extreme-ultraviolet lithography. Appl Opt, 46(27):6783-6792.
Open peer comments: Debate/Discuss/Question/Opinion
<1>