Full Text:   <7237>

Summary:  <1757>

CLC number: TH814

On-line Access: 2021-02-01

Received: 2019-10-13

Revision Accepted: 2020-07-14

Crosschecked: 2020-09-07

Cited: 0

Clicked: 5595

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lijun SUN

https://orcid.org/0000-0001-7547-2377

Chunhui Li

https://orcid.org/0000-0002-8854-2343

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.2 P.272-286

http://doi.org/10.1631/FITEE.1900558


Improvement of signal processing in Coriolis mass flowmeters for gas-liquid two-phase flow


Author(s):  Chunhui Li, Lijun Sun, Jiarong Liu, Yang Zhang, Haiyang Li, Huaxiang Wang

Affiliation(s):  School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; more

Corresponding email(s):   ChunhuiLi@tju.edu.cn, sunlijun@tju.edu.cn

Key Words:  Coriolis mass flowmeter, Digital signal processing method, Two-phase flow condition, Quadrature demodulation, Sliding discrete time Fourier transform (SDTFT), Hilbert transform


Share this article to: More <<< Previous Article|

Chunhui Li, Lijun Sun, Jiarong Liu, Yang Zhang, Haiyang Li, Huaxiang Wang. Improvement of signal processing in Coriolis mass flowmeters for gas-liquid two-phase flow[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(2): 272-286.

@article{title="Improvement of signal processing in Coriolis mass flowmeters for gas-liquid two-phase flow",
author="Chunhui Li, Lijun Sun, Jiarong Liu, Yang Zhang, Haiyang Li, Huaxiang Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="2",
pages="272-286",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900558"
}

%0 Journal Article
%T Improvement of signal processing in Coriolis mass flowmeters for gas-liquid two-phase flow
%A Chunhui Li
%A Lijun Sun
%A Jiarong Liu
%A Yang Zhang
%A Haiyang Li
%A Huaxiang Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 2
%P 272-286
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900558

TY - JOUR
T1 - Improvement of signal processing in Coriolis mass flowmeters for gas-liquid two-phase flow
A1 - Chunhui Li
A1 - Lijun Sun
A1 - Jiarong Liu
A1 - Yang Zhang
A1 - Haiyang Li
A1 - Huaxiang Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 2
SP - 272
EP - 286
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900558


Abstract: 
As an increasingly popular flow metering technology, coriolis mass flowmeter exhibits high measurement accuracy under single-phase flow condition and is widely used in the industry. However, under complex flow conditions, such as two-phase flow, the measurement accuracy is greatly decreased due to various factors including improper signal processing methods. In this study, three digital signal processing methods—the quadrature demodulation (QD) method, Hilbert method, and sliding discrete time Fourier transform method—are analyzed for their applications in processing sensor signals and providing measurement results under gas-liquid two-phase flow condition. Based on the analysis, specific improvements are applied to each method to deal with the signals under two-phase flow condition. For simulation, sensor signals under single- and two-phase flow conditions are established using a random walk model. The phase difference tracking performances of these three methods are evaluated in the simulation. Based on the digital signal processor, a converter program is implemented on its evaluation board. The converter program is tested under single- and two-phase flow conditions. The improved signal processing methods are evaluated in terms of the measurement accuracy and complexity. The QD algorithm has the best performance under the single-phase flow condition. Under the two-phase flow condition, the QD algorithm performs a little better in terms of the indication error and repeatability than the improved Hilbert algorithm at 160, 250, and 420 kg/h flow points, whereas the Hilbert algorithm outperforms the QD algorithm at the 600 kg/h flow point.

科里奥利质量流量计气液两相流信号处理的改进


李春辉1,孙立军1,刘佳荣1,张扬1,李海洋2,王化祥1
1天津大学电气自动化与信息工程学院,中国天津市,300072
2上海市计量测试技术研究院,中国上海市,201203

摘要:科里奥利质量流量计作为一种日益流行的流量测量仪表,在单相流条件下表现出较高测量精度,并在工业上得到广泛应用。但在复杂流动条件下,例如两相流工况,由于各种因素(包括不合适的信号处理方法),测量精度会大大降低。本文分析了3种数字信号处理方法--正交解调(QD)、希尔伯特和滑动离散傅立叶变换法,分别用于处理传感器信号并在两相流工况下测试算法性能。在此基础上,分别改进了两相流条件下的信号处理方法。在仿真中使用随机游走模型分别建立单相流和两相流工况下的传感器信号,评估这3种方法的相位差跟踪性能。基于数字信号处理器,在其评估板上完成转换器程序设计。将转换器在单相流和两相流工况下测试,根据测量精度和算法复杂度评估改进的信号处理方法性能,结果表明QD算法在单相流工况下性能最佳。在两相流条件下,QD算法在160、250和420 kg/h流量点的测量指示误差和重复性能优于改进的希尔伯特算法,而希尔伯特算法在600 kg/h流量点的性能优于QD算法。

关键词:科里奥利质量流量计;数字信号处理方法;两相流工况;正交解调;滑动离散傅里叶变换;希尔伯特变换

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cage DR, 1988. Drive Means for Oscillating Flow Tubes of Parallel Path Coriolis Mass Flow Rate Meter. US Patent 473 814 4.

[2]Carpenter BL, 1988. Ferromagnetic Drive and Velocity Sensors for a Coriolis Mass Flow Rate Meter. US Patent 477 783 3.

[3]Fan LY, 1995. The description for staggered periodic sampling signal FIR filter in time and frequency domains. Acta Electron Sin, 23(9):70-74 (in Chinese).

[4]Flecken P, 1989. Arrangement for Generating Natural Resonant Oscillations of a Mechanical Oscillating System. US Patent 480 189 7.

[5]Huang DP, Wang JQ, Yu SD, et al., 2016. Research on the analog driving circuit of Coriolis mass flow meter. Autom Instrum, 31(1):71-76 (in Chinese).

[6]Kalotay P, Bruck R, Emch A, et al., 1991. Flow Tube Drive Circuit Having a Bursty Output for Use in a Coriolis Meter. US Patent 500 910 9.

[7]Kunze JW, Storm R, Wang T, 2014. Coriolis mass flow measurement with entrained gas. Proc Sensors and Measuring Systems, p.1-6.

[8]Li M, Henry M, 2016. Signal processing methods for Coriolis mass flow metering in two-phase flow conditions. Proc IEEE Int Conf on Industrial Technology, p.690-695.

[9]Li M, Xu KJ, Hou QL, et al., 2010. Startup method of digital Coriolis mass flowmeter using alternating exciting of positive-negative step signal. Chin J Sci Instrum, 31(1):172-177 (in Chinese).

[10]Li XG, Xu KJ, 2009. Research on non-linear amplitude control method of Coriolis mass flow-tube. J Electron Meas Instrum, 23(6):82-86 (in Chinese).

[11]Li Y, Xu KJ, Zhu ZH, et al., 2010. Study and implementation of processing method for time-varying signal of Coriolis mass flowmeter. Chin J Sci Instrum, 31(1):8-14 (in Chinese).

[12]Liu JR, Sun LJ, Wang HX, 2018. Signal processing of Coriolis mass flowmeters under gas-liquid two-phase flow conditions. Proc IEEE Int Instrumentation and Measurement Technology Conf, p.1-6.

[13]Maginnis RL, 2003. Initialization Algorithm for Drive Control in a Coriolis Flowmeter. US Patent 650 513 5.

[14]Mehendale A, 2008. Coriolis Mass Flow Rate Meters for Low Flows. PhD Thesis, University of Twente, Enschede, the Netherlands.

[15]Meribout M, Saied IM, Hosani EA, 2018. A new FPGA-based terahertz imaging device for multiphase flow metering. IEEE Trans Terahertz Sci Technol, 8(4):418-426.

[16]Meribout M, Shehaz F, Saied IM, et al., 2019. High gas void fraction flow measurement and imaging using a THz-based device. IEEE Trans Terahertz Sci Technol, 9(6):659-668.

[17]Röck H, Koschmieder F, 2009. Model-based phasor control of a Coriolis mass flow meter (CMFM) for the detection of drift in sensitivity and zero point. In: Mukhopadhyay SC, Gupta GS, Huang RY (Eds.), Recent Advances in Sensing Technology. Springer Berlin Heidelberg, p.221-240.

[18]Romano P, 1990. Coriolis Mass Flow Rate Meter Having a Substantially Increased Noise Immunity. US Patent 493 419 6.

[19]Shen TA, Tu YQ, Li M, et al., 2015. New sliding DTFT algorithm for phase difference measurement based on a new kind of windows and its analysis. J Centr South Univ, 46(4):1302-1309 (in Chinese).

[20]Shen TA, Li M, Li HN, et al., 2017. Phase difference estimation method for Coriolis mass flowmeter based on correlation and Hilbert transform. Chin J Sci Instrum, 38(12):2908-2914 (in Chinese).

[21]Shimada H, 2013. Coriolis Flowmeter. US Patent 844 278 1.

[22]Svete A, Kutin J, Bobovnik G, et al., 2015. Theoretical and experimental investigations of flow pulsation effects in Coriolis mass flowmeters. J Sound Vibr, 352:30-45.

[23]Tao BB, Hou QL, Shi Y et al., 2014. Method and implementation of measuring the flow of liquid mixed with gas for Coriolis mass flowmeter. Chin J Sci Instrum, 35(8):1796-1802 (in Chinese).

[24]Tu YQ, Zhang HT, 2008. Method for CMF signal processing based on the recursive DTFT algorithm with negative frequency contribution. IEEE Trans Inst Meas, 57(11):2647-2654.

[25]Wang JH, 2013. Design of Coriolis Mass Flowmeter Based on Orthogonal Algorithm. MS Thesis, Shanghai Jiao Tong University, Shanghai, China (in Chinese).

[26]Wang T, Baker R, 2014. Coriolis flowmeters: a review of developments over the past 20 years, and an assessment of the state of the art and likely future directions. Flow Meas Instrum, 40:99-123.

[27]Yang HY, Tu YQ, Zhang HT, et al., 2012. Phase difference measuring method based on SVD and Hilbert transform for Coriolis mass flowmeter. Chin J Sci Instrum, 33(9):2101-2107 (in Chinese).

[28]Yang JW, Jia MP, 2006. Study on processing method and analysis of end problem of Hilbert-Huang spectrum. J Vibr Eng, 19(2):283-288 (in Chinese).

[29]Yokoi T, Owada H, 1996. Coriolis Type Mass Flowmeter Utilizing Phase Shifters for Phase Shifting of the Output Signals. US Patent 557 876 4.

[30]Zamora M, Henry MP, 2008. An FPGA implementation of a digital Coriolis mass flow metering drive system. IEEE Trans Ind Electron, 55(7):2820-2831.

[31]Zhang JG, Xu KJ, Fang ZY, et al., 2017. Applications of digital signal processing technology in Coriolis mass flowmeter. Chin J Sci Instrum, 38(9):2087-2102 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE