Full Text:   <1399>

Summary:  <1380>

CLC number: TP37

On-line Access: 2017-10-25

Received: 2017-03-28

Revision Accepted: 2017-08-16

Crosschecked: 2017-09-26

Cited: 1

Clicked: 3651

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qiong-hai Dai

http://orcid.org/0000-0002-0501-6840

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.9 P.1207-1221

http://doi.org/10.1631/FITEE.1700211


Emerging theories and technologies on computational imaging


Author(s):  Xue-mei Hu, Jia-min Wu, Jin-li Suo, Qiong-hai Dai

Affiliation(s):  Department of Automation, Tsinghua University, Beijing 100084, China; more

Corresponding email(s):   qhdai@tsinghua.edu.cn

Key Words:  Computational imaging, Multi-scale and multi-dimensional, Super-resolution, Femto-photography, 3D reconstruction, Hyperspectral imaging


Xue-mei Hu, Jia-min Wu, Jin-li Suo, Qiong-hai Dai. Emerging theories and technologies on computational imaging[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1207-1221.

@article{title="Emerging theories and technologies on computational imaging",
author="Xue-mei Hu, Jia-min Wu, Jin-li Suo, Qiong-hai Dai",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="9",
pages="1207-1221",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700211"
}

%0 Journal Article
%T Emerging theories and technologies on computational imaging
%A Xue-mei Hu
%A Jia-min Wu
%A Jin-li Suo
%A Qiong-hai Dai
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 9
%P 1207-1221
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700211

TY - JOUR
T1 - Emerging theories and technologies on computational imaging
A1 - Xue-mei Hu
A1 - Jia-min Wu
A1 - Jin-li Suo
A1 - Qiong-hai Dai
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 9
SP - 1207
EP - 1221
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700211


Abstract: 
computational imaging describes the whole imaging process from the perspective of light transport and information transmission, features traditional optical computing capabilities, and assists in breaking through the limitations of visual information recording. Progress in computational imaging promotes the development of diverse basic and applied disciplines. In this review, we provide an overview of the fundamental principles and methods in computational imaging, the history of this field, and the important roles that it plays in the development of science. We review the most recent and promising advances in computational imaging, from the perspective of different dimensions of visual signals, including spatial dimension, temporal dimension, angular dimension, spectral dimension, and phase. We also discuss some topics worth studying for future developments in computational imaging.

计算成像领域新理论和新方法

概要:计算成像学从光传播和信息传递角度为光的整个成像过程建模,将计算能力引入传统光学成像,旨在突破视觉信息记录的局限。计算成像领域的进展,促进了不同基础学科和应用学科的发展。我们概述了计算成像领域的基本原则和方法、发展过程及其在科学发展中起到的重要作用,从视觉信号的不同维度——包括空间、时间、角度、光谱、相位——分别综述了计算成像领域最新和最先进的研究进展,并讨论了该领域有发展前景的研究方向。

关键词:计算成像;多维多尺度;超分辨;飞秒成像;3D重建;超光谱成像

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Assion, A., Baumert, T., Bergt, M., et al., 1998. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science, 282(5390):919-922.

[2]Backman, V., Wallace, M.B., Perelman, L., et al., 2000. Detection of preinvasive cancer cells. Nature, 406(6791): 35-36.

[3]Bao, J., Bawendi, M.G., 2015. A colloidal quantum dot spectrometer. Nature, 523(7558):67-70.

[4]Bifano, T., 2011. Adaptive imaging: MEMS deformable mirrors. Nat. Photon., 5(1):21-23.

[5]Bina, M., Magatti, D., Molteni, M., et al., 2013. Backscattering differential ghost imaging in turbid media. Phys. Rev. Lett., 110(8), Article 083901.

[6]Brady, D., Gehm, M., Stack, R., et al., 2012. Multiscale gigapixel photography. Nature, 486(7403):386-389.

[7]Brenner, D.J., Hall, E.J., 2007. Computed tomography—an increasing source of radiation exposure. New Engl. J. Med., 357:2277-2284.

[8]Candès, E.J., Romberg, J., Tao, T., 2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489-509.

[9]Chaigne, T., Katz, O., Boccara, A.C., et al., 2014. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photon., 8(1):58-64.

[10]Chakrabarti, A., Zickler, T., 2011. Statistics of real-world hyperspectral images. IEEE Conf. on Computer Vision and Pattern Recognition, p.193-200.

[11]Chao, T.H., Zhou, H., Xia, X., et al., 2005. Near IR electro-optic imaging Fourier transform spectrometer. Proc. Optical Pattern Recognition, p.163-172.

[12]Charles, A.S., Olshausen, B.A., Rozell, C.J., 2011. Learning sparse codes for hyperspectral imagery. IEEE J. Sel. Topics Signal Process., 5 (5):963-978.

[13]Choi, W., Fang-Yen, C., Badizadegan, K.R., et al., 2007. Tomographic phase microscopy. Nat. Meth., 4(9):717-719.

[14]Cotte, Y., Toy, F., Jourdain, P., et al., 2013. Marker-free phase nanoscopy. Nat. Photon., 7(2):113-117.

[15]Cuche, E., Bevilacqua, F., Depeursinge, C., 1999. Digital holography for quantitative phase-contrast imaging. Opt. Lett., 24(5):291-293.

[16]Delalieux, S., Auwerkerken, A., Verstraeten, W.W., et al., 2009. Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves. Remote Sens., 1(4):858-874.

[17]Descour, M., Dereniak, E., 1995. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. Appl. Opt., 34(22):4817-4826.

[18]Diaspro, A., Chirico, G., Collini, M., 2005. Two-photon fluorescence excitation and related techniques in biological microscopy. Q. Rev. Biophys., 38(02):97-166.

[19]Ding, W., Wang, Y., Chen, H., et al., 2014. Plasmonic nanocavity organic light-emitting diode with significantly enhanced light extraction, contrast, viewing angle, brightness, and low-glare. Adv. Funct. Mater., 24(40):6329-6339.

[20]Ferguson, R., Phillips, W., 1967. High-resolution nuclear magnetic resonance spectroscopy. Science, 157(3786): 257-267.

[21]Fienup, J.R., 1982. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758-2769.

[22]Fienup, J.R., 2013. Phase retrieval algorithms: a personal tour [invited]. Appl. Opt., 52(1):45-56.

[23]Frenkel, K.A., 2010. Panning for science. Science, 330(6005):748-749.

[24]Gatti, A., Brambilla, E., Bache, M., et al., 2004. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett., 93(9), Article 093602.

[25]Gebbie, H., 1961. Molecular emission spectroscopy from 2μ to 12μ by a michelson interferometer. Nature, 191:264-265.

[26]Goda, K., Tsia, K., Jalali, B., 2009. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(7242):1145-1149.

[27]Greenbaum, A., Luo, W., Su, T.W., et al., 2012. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Meth., 9(9):889-895.

[28]Gustafsson, M.G., 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS, 102(37):13081-13086.

[29]Heide, F., Hullin, M.B., Gregson, J., et al., 2013. Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph., 32(4), Article 45.

[30]Hein, B., Willig, K.I., Hell, S.W., 2008. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. PNAS, 105(38):14271-14276.

[31]Hell, S.W., Wichmann, J., 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19(11):780-782.

[32]Helmchen, F., Denk, W., 2005. Deep tissue two-photon microscopy. Nat. Meth., 2(12):932-940.

[33]Hess, S.T., Girirajan, T.P., Mason, M.D., 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91(11):4258-4272.

[34]Horton, N.G., Wang, K., Kobat, D., et al., 2013. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon., 7(3):205-209.

[35]Howard, S.S., Straub, A., Horton, N.G., et al., 2013. Frequency-multiplexed In vivo multiphoton phosphorescence lifetime microscopy. Nat. Photon., 7(1):33-37.

[36]Jahr, W., Schmid, B., Schmied, C., et al., 2015. Hyperspectral light sheet microscopy. Nat. Commun., 6, Article 7990.

[37]Ji, N., Milkie, D.E., Betzig, E., 2010. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Meth., 7(2):141-147.

[38]Kester, R.T., Bedard, N., Gao, L., et al., 2011. Real-time snapshot hyperspectral imaging endoscope. J. Biomed. Opt., 16(5), Article 056005.

[39]Kim, T., Zhou, R., Mir, M., et al., 2014. White-light diffraction tomography of unlabelled live cells. Nat. Photon., 8(3):256-263.

[40]Levoy, M., Hanrahan, P., 1996. Light field rendering. Proc. 23rd Annual Conf. on Computer Graphics and Interactive Techniques, p.31-42.

[41]Levoy, M., Ng, R., Adams, A., et al., 2006. Light field microscopy. ACM Trans. Graph., 25(3):924-934.

[42]Lin, X., Liu, Y., Wu, J., et al., 2014. Spatial-spectral encoded compressive hyperspectral imaging. ACM Trans. Graph., 33(6), Article 233.

[43]Lin, X., Wu, J., Zheng, G., et al., 2015. Camera array based light field microscopy. Biomed. Opt. Expr., 6(9):3179-3189.

[44]Ma, C., Cao, X., Tong, X., et al., 2014. Acquisition of high spatial and spectral resolution video with a hybrid camera system. Int. J. Comput. Vis., 110(2):141-155.

[45]Manley, S., Gillette, J.M., Patterson, G.H., et al., 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Meth., 5(2):155-157.

[46]Marks, D.L., Son, H.S., Kim, J., et al., 2012. Engineering a gigapixel monocentric multiscale camera. Opt. Eng., 51(8), Article 083202.

[47]Morris, P.A., Aspden, R.S., Bell, J.E., et al., 2015. Imaging with a small number of photons. Nat. Commun., 6, Article 5913.

[48]Nakagawa, K., Iwasaki, A., Oishi, Y., et al., 2014. Sequentially timed all-optical mapping photography (STAMP). Nat. Photon., 8(9):695-700.

[49]Neifeld, M.A., Shankar, P., 2003. Feature-specific imaging. Appl. Opt., 42(17):3379-3389.

[50]Ng, R., Levoy, M., Brédif, M., et al., 2005. Light field photography with a hand-held plenoptic camera. Comput. Sci. Techn. Rep., 2(11):1-11.

[51]Orth, A., Tomaszewski, M.J., Ghosh, R.N., et al., 2015. Gigapixel multispectral microscopy. Optica, 2(7):654-662.

[52]Pal, H., Neifeld, M., 2003. Multispectral principal component imaging. Opt. Expr., 11(18):2118-2125.

[53]Popescu, G., Deflores, L.P., Vaughan, J.C., et al., 2004. Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett., 29(21):2503-2505.

[54]Prevedel, R., Yoon, Y.G., Hoffmann, M., et al., 2014. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Meth., 11(7):727-730.

[55]Rust, M.J., Bates, M., Zhuang, X., 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Meth., 3(10):793-796.

[56]Ryle, M., 1972. The 5-km radio telescope at Cambridge. Nature, 239:435-438.

[57]Schermelleh, L., Heintzmann, R., Leonhardt, H., 2010. A guide to super-resolution fluorescence microscopy. J. Cell Biol., 190(2):165-175.

[58]Stoklasa, B., Motka, L., Rehacek, J., et al., 2014. Wavefront sensing reveals optical coherence. Nat. Commun., 5, Article 3275.

[59]Strack, R., 2016. Highly multiplexed imaging. Nat. Meth., 13(1), Article 35.

[60]Suo, J., Bian, L., Chen, F., et al., 2014. Bispectral coding: compressive and high-quality acquisition of fluorescence and reflectance. Opt. Expr., 22(2):1697-1712.

[61]Teague, M.R., 1983. Deterministic phase retrieval: a green’s function solution. JOSA, 73(11):1434-1441.

[62]van Tilbeurgh, H., Egloff, M., Martinez, C., et al., 1993. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature, 362(6423):814-820.

[63]Vellekoop, I., Lagendijk, A., Mosk, A., 2010. Exploiting disorder for perfect focusing. Nat. Photon., 4(5):320-322.

[64]Velten, A., Willwacher, T., Gupta, O., et al., 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun., 3, Article 745.

[65]Velten, A., Wu, D., Jarabo, A., et al., 2013. Femto-photography: capturing and visualizing the propagation of light. ACM Trans. Graph., 32(4), Article 44.

[66]Waller, L., Kou, S.S., Sheppard, C.J., et al., 2010a. Phase from chromatic aberrations. Opt. Expr., 18(22):22817-22825.

[67]Waller, L., Tian, L., Barbastathis, G., 2010b. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Expr., 18(12):12552-12561.

[68]Waller, L., Situ, G., Fleischer, J.W., 2012. Phase-space measurement and coherence synthesis of optical beams. Nat. Photon., 6(7):474-479.

[69]Wang, L.V., Hu, S., 2012. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335(6075):1458-1462.

[70]Wilburn, B., Joshi, N., Vaish, V., et al., 2004. High-speed videography using a dense camera array. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.294-301.

[71]Willett, R., Gehm, M.E., Brady, D.J., 2007. Multiscale reconstruction for computational spectral imaging. Proc. Electronic Imaging, Article 64980L.

[72]Wong, G., 2009. Snapshot hyperspectral imaging and practical applications. J. Phys., 178(1), Article 012048.

[73]Zernike, F., 1955. How I discovered phase contrast. Science, 121(3141):345-349.

[74]Zheng, G., Horstmeyer, R., Yang, C., 2013. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon., 7(9):739-745.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE