CLC number: TN957.52
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-02-28
Cited: 8
Clicked: 7825
Lei-lei Kou, Xiao-qing Wang, Mao-sheng Xiang, Jin-song Chong, Min-hui Zhu. Effect of orbital errors on the geosynchronous circular synthetic aperture radar imaging and interferometric processing[J]. Journal of Zhejiang University Science C, 2011, 12(5): 404-416.
@article{title="Effect of orbital errors on the geosynchronous circular synthetic aperture radar imaging and interferometric processing",
author="Lei-lei Kou, Xiao-qing Wang, Mao-sheng Xiang, Jin-song Chong, Min-hui Zhu",
journal="Journal of Zhejiang University Science C",
volume="12",
number="5",
pages="404-416",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1000170"
}
%0 Journal Article
%T Effect of orbital errors on the geosynchronous circular synthetic aperture radar imaging and interferometric processing
%A Lei-lei Kou
%A Xiao-qing Wang
%A Mao-sheng Xiang
%A Jin-song Chong
%A Min-hui Zhu
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 5
%P 404-416
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000170
TY - JOUR
T1 - Effect of orbital errors on the geosynchronous circular synthetic aperture radar imaging and interferometric processing
A1 - Lei-lei Kou
A1 - Xiao-qing Wang
A1 - Mao-sheng Xiang
A1 - Jin-song Chong
A1 - Min-hui Zhu
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 5
SP - 404
EP - 416
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000170
Abstract: The geosynchronous circular synthetic aperture radar (GEOCSAR) is an innovative SAR system, which can produce high resolution three-dimensional (3D) images and has the potential to provide 3D deformation measurement. With an orbit altitude of approximately 36 000 km, the orbit motion and orbit disturbance effects of GEOCSAR behave differently from those of the conventional spaceborne SAR. In this paper, we analyze the effects of orbit errors on GEOCSAR imaging and interferometric processing. First, we present the GEOCSAR imaging geometry and the orbit errors model based on perturbation analysis. Then, we give the GEOCSAR signal formulation based on imaging geometry, and analyze the effect of the orbit error on the output focused signal. By interferometric processing on the 3D reconstructed images, the relationship between satellite orbit errors and the interferometric phase is deduced. Simulations demonstrate the effects of orbit errors on the GEOCSAR images, interferograms, and the deformations. The conclusions are that the required relative accuracy of orbit estimation should be at centimeter level for GEOCSAR imaging at L-band, and that millimeter-scale accuracy is needed for GEOCSAR interferometric processing.
[1]Axelsson, S.R.J., 2004. Beam characteristics of three-dimensional SAR in curved or random paths. IEEE Trans. Geosci. Remote Sens., 42(10):2324-2334.
[2]Bruno, D., Hobbs, S.E., Ottavianelli, G., 2006. Geosynchronous synthetic aperture radar: concept design, properties and possible applications. Acta Astronaut., 59(1-5):149-156.
[3]Cantalloube, H.M.J., Colin-Koeniguer, É., Oriot, H., 2007. High Resolution SAR Imaging along Circular Trajectories. IGARSS, p.850-853.
[4]Cassara, P.P., 1963. The Influence of Tesseral Harmonics and Lunisolar Gravitation on the Motion of a 24-Hour Satellite. AIAA, p.63-153.
[5]Cazzani, L., Colesanti, C., Leva, D., Nesti, G., Prati, C., Rocca, F., Tarchi, D., 2000. A ground-based parasitic SAR experiment. IEEE Trans. Geosci. Remote Sens., 38(5):2132-2141.
[6]Chan, T.K., Kuga, Y., Ishimaru, A., 1999. Experimental studies on circular SAR imaging in clutter using angular correction function technique. IEEE Trans. Geosci. Remote Sens., 37(5):2192-2197.
[7]Colesanti, C., Perissin, D., 2006. A first experiment of 3D imaging with a ground based parasitic SAR. IGARSS, p.1192-1195.
[8]Cumming, I.G., Wong, F.H., 2005. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, Inc., London, p.25-109.
[9]Erik, M.S., 1994. Handbook of Geostationary Orbits (1st Ed.). Kluwer Academic Publishers, the Netherlands, p.886-1070.
[10]Hanssen, R.F., 2002. Radar Interferometry—Data Interpretation and Error Analysis. Kluwer Academic Publishers, the Netherlands, p.42-155.
[11]Ishimaru, A., Chan, T.K., Kuga, Y., 1998. An imaging technique using confocal circular synthetic aperture radar. IEEE Trans. Geosci. Remote Sens., 36(5):1524-1530.
[12]Kimura, H., Todo, M., 1997. Baseline Estimation Using Ground Points for Interferometric SAR. IGARSS, p.442-444.
[13]Knaell, K.K., Cardillo, G.P., 1995. Radar tomography for the generation of three-dimensional images. IEE Proc.-Radar Sonar Navig., 142(2):54-60.
[14]Li, F.K., Held, D.N., Curlander, J.C., Wu, C., 1985. Doppler parameter estimation for spaceborne synthetic aperture radars. IEEE Trans. Geosci. Remote Sens. Lett., 23(1):47-56.
[15]Liu, J.Y., Zhu, J.B., Hu, Z.H., Liu, Y., 2006. Error compensation and high-precision baseline estimation in InSAR geolocation using GCPs. SPIE, 6418:64180L.
[16]Madsen, S.N., Edelstein, W., Didomenico, L.D., LaBrecque, J., 2001. A Geosynchronous Synthetic Aperture Radar: for Tectonic Mapping, Disaster Management and Measurements of Vegetation and Soil Moisture. IGARSS, p.447-449.
[17]Madsen, S.N., Chen, C., Edelstein, W., 2002. Radar Options for Global Earthquake Monitoring. IGARSS, p.1483-1485.
[18]Musen, P., Bailie, A.E., 1962. On the motion of a 24-hour satellite. J. Geophys. Res., 67(3):1123-1132.
[19]NASA, 2003. Global Earthquake Satellite System: a 20-Year Plan to Enable Earthquake Prediction. Available from http://solidearth.jpl.nasa.gov/gess.html [Accessed on Sept. 28, 2009].
[20]Ren, K., Prinet, V., Shi, X.Q., Wang, F., 2003. Comparison of Satellite Baseline Estimation Methods for Interferometry Applications. IGARSS, p.3821-3823.
[21]Shrivastava, S.K., 1978. Orbital perturbations and station-keeping of communication satellites. J. Spacecraft Rock., 15(2):67-78.
[22]Tomiyasu, K., 1978. Synthetic Aperture Radar in Geosynchronous Orbit. IEEE Antennas and Propagation Symp., p.42-45.
[23]Tomiyasu, K., 1983. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans. Geosci. Remote Sens., 21(3):324-329.
[24]Yoon, J.C., Lee, K.H., Lee, B.S., 2004. Geostationary orbit determination for time synchronization using analytical dynamic models. IEEE Trans. Aerosp. Electron. Syst., 40(4):1132-1146.
[25]Zhang, J.X., Cao, X.B., 2004. Analysis and simulation of satellite system parameter effect on SAR Doppler parameters. J. Electron. Inform. Technol., 26(11):1746-1751 (in Chinese).
[26]Zhang, L., Wu, J.C., Ding, X.L., Xiao, F., 2007. The Propagation of Orbital Errors in the 3-Pass DInSAR Processing. 1st Asian and Pacific Conf. on Synthetic Aperture Radar, p.550-554.
[27]Zhou, P., Pi, Y.M., Wang, J.F., 2007. Precise Computation of Doppler Parameters for Spaceborne SAR in Elliptic Orbits. IGARSS, p.721-724.
Open peer comments: Debate/Discuss/Question/Opinion
<1>