Full Text:   <2334>

Summary:  <1642>

CLC number: TP181

On-line Access: 2019-08-05

Received: 2017-07-04

Revision Accepted: 2017-12-25

Crosschecked: 2019-07-03

Cited: 0

Clicked: 6113

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhen-yi Xu

http://orcid.org/0000-0002-5804-882X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.7 P.925-929

http://doi.org/10.1631/FITEE.1700442


Man-machine verification of mouse trajectory based on the random forest model


Author(s):  Zhen-yi Xu, Yu Kang, Yang Cao, Yu-xiao Yang

Affiliation(s):  Department of Automation, School of Information Science and Technology, University of Science and Technology of China, Hefei 230022, China; more

Corresponding email(s):   xuzhenyi@mail.ustc.edu.cn, kangduyu@ustc.edu.cn, forrest@ustc.edu.cn, yyx531@mail.ustc.edu.cn

Key Words:  Man-machine verification, Random forest, Support vector machine, Logistic regression, Performance metrics


Zhen-yi Xu, Yu Kang, Yang Cao, Yu-xiao Yang. Man-machine verification of mouse trajectory based on the random forest model[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(7): 925-929.

@article{title="Man-machine verification of mouse trajectory based on the random forest model",
author="Zhen-yi Xu, Yu Kang, Yang Cao, Yu-xiao Yang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="7",
pages="925-929",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700442"
}

%0 Journal Article
%T Man-machine verification of mouse trajectory based on the random forest model
%A Zhen-yi Xu
%A Yu Kang
%A Yang Cao
%A Yu-xiao Yang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 7
%P 925-929
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700442

TY - JOUR
T1 - Man-machine verification of mouse trajectory based on the random forest model
A1 - Zhen-yi Xu
A1 - Yu Kang
A1 - Yang Cao
A1 - Yu-xiao Yang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 7
SP - 925
EP - 929
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700442


Abstract: 
Identifying code has been widely used in man-machine verification to maintain network security. The challenge in engaging man-machine verification involves the correct classification of man and machine tracks. In this study, we propose a random forest (RF) model for man-machine verification based on the mouse movement trajectory dataset. We also compare the RF model with the baseline models (logistic regression and support vector machine) based on performance metrics such as precision, recall, false positive rates, false negative rates, F-measure, and weighted accuracy. The performance metrics of the RF model exceed those of the baseline models.

基于随机森林模型的滑动轨迹人机识别

摘要:识别码在维护网络安全的人机身份验证中得到广泛应用。人机身份验证面临的挑战包括对人与机器滑动轨迹的正确检测。提出一种基于滑动轨迹数据集的人机识别随机森林模型。通过多维性能评价指标,包括识别准确率、识别召回率、识别误报率、识别漏报率、F值和加权准确率,验证该随机森林模型以及基准模型(逻辑回归模型和支持向量机)。随机森林模型多维性能评价指标优于基准模型。

关键词:人机识别;随机森林;支持向量机;逻辑回归;多维性能评价指标

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Brown M, Rogers SJ, 1993. User identification via keystroke characteristics of typed names using neural networks. Int J Man-Mach Stud, 39(6):999-1014.

[2]Caruana R, Niculescu-Mizil A, 2006. An empirical comparison of supervised learning algorithms. 23rd Int Conf on Machine Learning, p.161-168.

[3]Chen C, Liaw A, Breiman L, 2004. Using Random Forest to Learn Imbalanced Data. Technical Report No. 666, University of California, Berkeley.

[4]De’ath G, Fabricius KE, 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81(11):3178-3192.

[5]Gordon LA, Loeb MP, Lucyshyn W, et al., 2006. 2006 CSI/FBI Computer Crime and Security Survey. Computer Security Institute, USA.

[6]Hultquist C, Chen G, Zhao KG, 2014. A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests. Remote Sens Lett, 5(8):723-732.

[7]Liu L, Yang AL, Zhou WJ, et al., 2015. Robust dataset classification approach based on neighbor searching and kernel fuzzy c-means. IEEE/CAA J Autom Sin, 2(3):235-247.

[8]Sanjaa B, Chuluun E, 2013. Malware detection using linear SVM. 8th Int Forum on Strategic Technology, p.136-138.

[9]Su T, 2016. Application of CAPTCHA with Behavioral Vilification Based on GBDT. MS Thesis, Central China Normal University, Wuhan, China (in Chinese).

[10]Taieb SB, Hyndman RJ, 2014. A gradient boosting approach to the Kaggle load forecasting competition. Int J Forecast, 30(2):382-394.

[11]Weiss A, Ramapanicker A, Shah P, et al., 2007. Mouse movements biometric identification: a feasibility study. Proc Student/Faculty Research Day.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE