Full Text:   <42>

CLC number: 

On-line Access: 2024-05-16

Received: 2024-01-05

Revision Accepted: 2024-04-19

Crosschecked: 0000-00-00

Cited: 0

Clicked: 77

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 1998 Vol.-1 No.-1 P.

http://doi.org/10.1631/jzus.A2400012


Predicting tunnel boring machine performance with the informer model: a case study of the Guangzhou Metro Line project


Author(s):  Junxing ZHAO, Xiaobin DING

Affiliation(s):  School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; more

Corresponding email(s):   dingxb@scut.edu.cn

Key Words:  Boring machine performance, Informer model, Deep learning, Thrust force


Junxing ZHAO, Xiaobin DING. Predicting tunnel boring machine performance with the informer model: a case study of the Guangzhou Metro Line project[J]. Journal of Zhejiang University Science A, 1998, -1(-1): .

@article{title="Predicting tunnel boring machine performance with the informer model: a case study of the Guangzhou Metro Line project",
author="Junxing ZHAO, Xiaobin DING",
journal="Journal of Zhejiang University Science A",
volume="-1",
number="-1",
pages="",
year="1998",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400012"
}

%0 Journal Article
%T Predicting tunnel boring machine performance with the informer model: a case study of the Guangzhou Metro Line project
%A Junxing ZHAO
%A Xiaobin DING
%J Journal of Zhejiang University SCIENCE A
%V -1
%N -1
%P
%@ 1673-565X
%D 1998
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400012

TY - JOUR
T1 - Predicting tunnel boring machine performance with the informer model: a case study of the Guangzhou Metro Line project
A1 - Junxing ZHAO
A1 - Xiaobin DING
J0 - Journal of Zhejiang University Science A
VL - -1
IS - -1
SP -
EP -
%@ 1673-565X
Y1 - 1998
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400012


Abstract: 
Accurately forecasting the operational performance of a tunnel boring machine (TBM) in advance is useful for making timely adjustments to boring parameters, thereby enhancing overall boring efficiency. In this study we used the informer model to predict a critical performance parameter of the TBM, namely thrust. Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China, the model's performance was validated, while data from Line 18 was used to assess its generalization capability. Results revealed that the informer model surpasses Random Forest, Extreme Gradient Boosting, Support Vector Regression, k-Nearest Neighbors, Back Propagation, and Long Short-Term Memory models in both prediction accuracy and generalization performance. In addition, the optimal input lengths for maximizing accuracy in the single time-step output model are within the range of 8-24, while for the multiple time-step output model, the optimal input length is 8. Furthermore, the last predicted value in the case of multiple time-step outputs showed the highest accuracy. It was also found that relaxation of the Pearson's analysis method metrics to 0.95 improved the performance of the model. Finally, the prediction results were most affected by earth pressure, rotation speed, torque, boring speed, and the surrounding rock grade. The model can provide useful guidance for constructors when adjusting TBM operation parameters.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE