Full Text:   <2121>

Summary:  <1566>

CLC number: TP311

On-line Access: 2022-04-22

Received: 2018-08-16

Revision Accepted: 2018-09-14

Crosschecked: 2018-10-15

Cited: 0

Clicked: 3853

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kai Lu

http://orcid.org/0000-0003-2284-7897

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.10 P.1236-1244

http://doi.org/10.1631/FITEE.1800494


Moving from exascale to zettascale computing: challenges and techniques


Author(s):  Xiang-ke Liao, Kai Lu, Can-qun Yang, Jin-wen Li, Yuan Yuan, Ming-che Lai, Li-bo Huang, Ping-jing Lu, Jian-bin Fang, Jing Ren, Jie Shen

Affiliation(s):  College of Computer, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   kailu@nudt.edu.cn

Key Words:  High-performance computing, Zettascale, Micro-architectures, Interconnection, Storage system, Manufacturing process, Programming models and environments


Xiang-ke Liao, Kai Lu, Can-qun Yang, Jin-wen Li, Yuan Yuan, Ming-che Lai, Li-bo Huang, Ping-jing Lu, Jian-bin Fang, Jing Ren, Jie Shen. Moving from exascale to zettascale computing: challenges and techniques[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(10): 1236-1244.

@article{title="Moving from exascale to zettascale computing: challenges and techniques",
author="Xiang-ke Liao, Kai Lu, Can-qun Yang, Jin-wen Li, Yuan Yuan, Ming-che Lai, Li-bo Huang, Ping-jing Lu, Jian-bin Fang, Jing Ren, Jie Shen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="10",
pages="1236-1244",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800494"
}

%0 Journal Article
%T Moving from exascale to zettascale computing: challenges and techniques
%A Xiang-ke Liao
%A Kai Lu
%A Can-qun Yang
%A Jin-wen Li
%A Yuan Yuan
%A Ming-che Lai
%A Li-bo Huang
%A Ping-jing Lu
%A Jian-bin Fang
%A Jing Ren
%A Jie Shen
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 10
%P 1236-1244
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800494

TY - JOUR
T1 - Moving from exascale to zettascale computing: challenges and techniques
A1 - Xiang-ke Liao
A1 - Kai Lu
A1 - Can-qun Yang
A1 - Jin-wen Li
A1 - Yuan Yuan
A1 - Ming-che Lai
A1 - Li-bo Huang
A1 - Ping-jing Lu
A1 - Jian-bin Fang
A1 - Jing Ren
A1 - Jie Shen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 10
SP - 1236
EP - 1244
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800494


Abstract: 
high-performance computing (HPC) is essential for both traditional and emerging scientific fields, enabling scientific activities to make progress. With the development of high-performance computing, it is foreseeable that exascale computing will be put into practice around 2020. As Moore's law approaches its limit, high-performance computing will face severe challenges when moving from exascale to zettascale, making the next 10 years after 2020 a vital period to develop key HPC techniques. In this study, we discuss the challenges of enabling zettascale computing with respect to both hardware and software. We then present a perspective of future HPC technology evolution and revolution, leading to our main recommendations in support of zettascale computing in the coming future.

从E级计算到Z级计算的新挑战与新技术

摘要:高性能计算已成为促进传统与新兴领域科技创新取得进展的基础设施。随着高性能计算的发展,E级系统(每秒1018次浮点运算)预计2020年前后投入使用。实现E级计算后的10年(2020-2030)将成为E级计算向Z级计算(每秒1021次浮点运算)过渡的关键时期,计算能力提升将面临前所未有的挑战。从硬件和软件方面分析未来高性能计算的挑战,展望后E级计算时代的技术发展与革新,并提出未来实现E级计算向Z级计算过渡的可行性建议。

关键词:高性能计算;Z级计算;微处理器体系结构;高速互联;存储系统;制造工艺;编程模型与环境

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ábrahám E, Bekas C, Brandic I, et al., 2015. Preparing HPC applications for exascale: challenges and recommendations. 18th Int Conf on Network-Based Information Systems, p.401-406.

[2]Asch M, Moore T, Badia R, et al., 2018. Big data and extreme-scale computing: pathways to convergence—toward a shaping strategy for a future software and data ecosystem for scientific inquiry. Int J High Perform Comput Appl, 32(4):435-479.

[3]Cavin RK, Lugli P, Zhirnov VV, 2012. Science and engineering beyond Moore's law. Proc IEEE, 100:1720-1749.

[4]Chong FT, Franklin D, Martonosi M, 2017. Programming languages and compiler design for realistic quantum hardware. Nature, 549(7671):180-187.

[5]Diaz J, Mu aoz-Caro C, Ni ao A, 2012. A survey of parallel programming models and tools in the multi and many-core era. IEEE Trans Parall Distrib Syst, 23(8):1369-1386.

[6]Fang J, Varbanescu AL, Sips HJ, 2011. A comprehensive performance comparison of CUDA and OpenCL. Int Conf on Parallel Processing, p.216-225.

[7]Glosli JN, Richards DF, Caspersen KJ, et al., 2007. Extending stability beyond CPU millennium: a micron-scale atomistic simulation of Kelvin-Helmholtz instability. ACM/IEEE Conf on Supercomputing, p.1-11.

[8]Jacob P, Zia A, Erdogan O, et al., 2009. Mitigating memory wall effects in high-clock-rate and multicore CMOS 3D processor memory stacks. Proc IEEE, 97(1):108-122.

[9]Jeddeloh J, Keeth B, 2012. Hybrid memory cube new DRAM architecture increases density and performance. Int Symp on VLSI Technology, p.87-88.

[10]Keeton K, 2015. The machine: an architecture for memory-centric computing. 5$^rm th$ Int Workshop on Runtime and Operating Systems for Supercomputers, p.1.

[11]Kim NS, Chen D, Xiong J, et al., 2017. Heterogeneous computing meets near-memory acceleration and high-level synthesis in the post-Moore era. IEEE Micro, 37(4):10-18.

[12]Kolli A, Rosen J, Diestelhorst S, et al., 2016. Delegated persist ordering. 49th Annual IEEE/ACM Int Symp on Microarchitecture, p.1-13.

[13]Lucas R, Ang J, Bergman K, et al., 2014. Top10 exascale research challenges. Department of Energy Office of Science. https://science.energy.gov/textasciitilde/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf

[14]Mishra S, Chaudhary NK, Singh K, 2013. Overview of optical interconnect technology. Int J Sci Eng Res, 3(4):364-374.

[15]Rumley S, Nikolova D, Hendry R, et al., 2015. Silicon photonics for exascale systems. J Lightw Technol, 33(3):547-562.

[16]Schroeder B, Gibson GA, 2007. Understanding failures in petascale computers. J Phys, 78(1):012022.

[17]Shen J, Fang J, Sips HJ, et al., 2013. An application-centric evaluation of OpenCL on multi-core CPUs. Parall Comput, 39(12):834-850.

[18]Vinaik B, Puri R, 2015. Oracle's Sonoma processor: advanced low-cost SPARC processor for enterprise workloads. IEEE Hot Chips 27 Symp, p.1-23.

[19]Waldrop MM, 2016. The chips are down for Moore's law. Nature, 530(7589):144-147.

[20]Wilkes MV, 1995. The memory wall and the CMOS end-point. SIGARCH Comput Archit News, 23(4):4-6.

[21]Wulf WA, McKee SA, 1995. Hitting the memory wall: implications of the obvious. SIGARCH Comput Archit News, 23(1):20-24.

[22]Xu W, Lu Y, Li Q, et al., 2014. Hybrid hierarchy storage system in Milkyway-2 supercomputer. Front Comput Sci, 8(3):367-377.

[23]Xu Z, Chi X, Xiao N, 2016. High-performance computing environment: a review of twenty years of experiments in China. Nat Sci Rev, 3(1):36-48.

[24]Zhang P, Fang JB, Tang T, et al., 2018. Auto-tuning streamed applications on Intel Xeon Phi. IEEE Int Parallel and Distributed Processing Symp, p.515-525.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE