Full Text:   <2514>

Summary:  <1527>

CLC number: 

On-line Access: 2019-01-07

Received: 2018-08-31

Revision Accepted: 2018-11-18

Crosschecked: 2018-12-17

Cited: 0

Clicked: 4775

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Mian-xiong Dong

http://orcid.org/0000-0002-2788-3451

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.12 P.1546-1557

http://doi.org/10.1631/FITEE.1800519


SIoTFog: Byzantine-resilient IoT fog networking


Author(s):  Jian-wen Xu, Kaoru Ota, Mian-xiong Dong, An-feng Liu, Qiang Li

Affiliation(s):  Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran 0508585, Japan; more

Corresponding email(s):   17096011@mmm.muroran-it.ac.jp, ota@mmm.muroran-it.ac.jp, mxdong@mmm.muroran-it.ac.jp, afengliu@mail.csu.edu.cn, li_qiang@jlu.edu.cn

Key Words:  Byzantine fault tolerance, Fog computing, Resource allocation, Internet of Things (IoT)


Jian-wen Xu, Kaoru Ota, Mian-xiong Dong, An-feng Liu, Qiang Li. SIoTFog: Byzantine-resilient IoT fog networking[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(12): 1546-1557.

@article{title="SIoTFog: Byzantine-resilient IoT fog networking",
author="Jian-wen Xu, Kaoru Ota, Mian-xiong Dong, An-feng Liu, Qiang Li",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="12",
pages="1546-1557",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800519"
}

%0 Journal Article
%T SIoTFog: Byzantine-resilient IoT fog networking
%A Jian-wen Xu
%A Kaoru Ota
%A Mian-xiong Dong
%A An-feng Liu
%A Qiang Li
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 12
%P 1546-1557
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800519

TY - JOUR
T1 - SIoTFog: Byzantine-resilient IoT fog networking
A1 - Jian-wen Xu
A1 - Kaoru Ota
A1 - Mian-xiong Dong
A1 - An-feng Liu
A1 - Qiang Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 12
SP - 1546
EP - 1557
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800519


Abstract: 
The current boom in the internet of Things (IoT) is changing daily life in many ways, from wearable devices to connected vehicles and smart cities. We used to regard fog computing as an extension of cloud computing, but it is now becoming an ideal solution to transmit and process large-scale geo-distributed big data. We propose a Byzantine fault-tolerant networking method and two resource allocation strategies for IoT fog computing. We aim to build a secure fog network, called “SIoTFog,” to tolerate the Byzantine faults and improve the efficiency of transmitting and processing IoT big data. We consider two cases, with a single Byzantine fault and with multiple faults, to compare the performances when facing different degrees of risk. We choose latency, number of forwarding hops in the transmission, and device use rates as the metrics. The simulation results show that our methods help achieve an efficient and reliable fog network.

SIoTFog:具备拜占庭容错机制的物联网雾计算网络

摘要:物联网技术爆炸式发展,从可穿戴设备到车辆互联,再到智慧城市等方面,正在改变人们的日常生活。过去,人们习惯将雾计算看作云计算的延伸;事实上,雾计算逐渐成为传输、处理分布式大数据的理想解决办法。提出一种考虑拜占庭容错的组网方法,以及两种针对物联网雾计算的资源分配算法。目的是设计一个称作"SIoTFog"的安全雾计算网络,能够抵御拜占庭错误影响并提高传输、处理物联网大数据的效率。考虑两种情况,即面对单一拜占庭错误和多拜占庭错误的不同隐患时,比较算法性能。选择时延、传输时总转发跳数和设备利用率作为性能指标。仿真结果表明,该方法可助力实现高效、可靠的雾计算网络。

关键词:拜占庭容错;雾计算;资源分配;物联网

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alrawais A, Alhothaily A, Hu CQ, et al., 2017. Fog computing for the Internet of Things: security and privacy issues. IEEE Internet Comput, 21(2):34-42.

[2]Aublin PL, Mokhtar SB, Quéma V, 2013. RBFT: redundant Byzantine fault tolerance. IEEE 33rd Int Conf on Distributed Computing Systems, p.297-306.

[3]Bessani A, Sousa J, Alchieri EEP, 2014. State machine replication for the masses with BFT-SMART. 44th Annual IEEE/IFIP Int Conf on Dependable Systems and Networks, p.355-362.

[4]Bonomi F, Milito R, Zhu J, et al., 2012. Fog computing and its role in the Internet of Things. Proc 1st Edition of the MCC Workshop on Mobile Cloud Computing, p.13-16.

[5]Castillo-Cara M, Huaranga-Junco E, Quispe-Montesinos M, et al., 2018. FROG: a robust and green wireless sensor node for fog computing platforms. J Sens, 2018:3406858.

[6]Castro M, Liskov B, 2002. Practical Byzantine fault tolerance and proactive recovery. ACM Trans Comput Syst, 20(4):398-461.

[7]Driscoll K, Hall B, Sivencrona H, et al., 2003. Byzantine fault tolerance, from theory to reality. LNCS, 2788:235-248.

[8]Driscoll K, Hall B, Paulitsch M, et al., 2004. The real Byzantine generals. 23rd Digital Avionics Systems Conf, p.1-11.

[9]Gao DH, Wang QF, Lei Y, 2017. Distributed fault-tolerant strategy for electric swing system of hybrid excavators under communication errors. Front Inform Technol Electron Eng, 18(7):941-954.

[10]Hu PF, Ning HS, Qiu T, et al., 2017. Security and privacy preservation scheme of face identification and resolution framework using fog computing in Internet of Things. IEEE Internet Things J, 4(5):1143-1155.

[11]IHS Markit, 2017. IoT Trend Watch 2017. https://ihsmarkit.com/Info/0117/IoT-trend-watch-2017.html [Accessed on Aug. 29, 2018].

[12]Jalali F, Hinton K, Ayre R, et al., 2016. Fog computing may help to save energy in cloud computing. IEEE J Sel Areas Commun, 34(5):1728-1739.

[12]Khosravi A, Kavian YS, 2016. Autonomous fault-diagnosis and decision-making algorithm for determining faulty nodes in distributed wireless networks. Front Inform Technol Electron Eng, 17(9):885-896.

[14]Kotla R, Alvisi L, Dahlin M, et al., 2010. Zyzzyva: speculative Byzantine fault tolerance. ACM Trans Comput Syst, 27(4), Article 7.

[15]Lamport L, Shostak R, Pease M, 1982. The Byzantine generals problem. ACM Trans Program Lang Syst, 4(3):382-401.

[16]Li H, Li P, Guo S, et al., 2014. Byzantine-resilient secure software-defined networks with multiple controllers in cloud. IEEE Trans Cloud Comput, 2(4):436-447.

[17]Li H, Ota K, Dong MX, 2018. Learning IoT in edge: deep learning for the Internet of Things with edge computing. IEEE Network, 32(1):96-101.

[18]Liu Z, Dong MX, Zhou H, et al., 2016. Device-to-device assisted video frame recovery for picocell edge users in heterogeneous networks. IEEE Int Conf on Communications, p.1-6.

[19]Miller A, Xia Y, Croman K, et al., 2016. The honey badger of BFT protocols. Proc ACM SIGSAC Conf on Computer and Communications Security, p.31-42.

[20]Perera C, Qin YR, Estrella JC, et al., 2017. Fog computing for sustainable smart cities: a survey. ACM Comput Surv, 50(3), Article 32.

[21]Reznik A, Arora R, Cannon M, et al., 2017. Developing software for multi-access edge computing. ETSI White Paper 20.

[22]Satyanarayanan M, 2017. The emergence of edge computing. Computer, 50(1):30-39.

[23]Satyanarayanan M, Bahl P, Cáceres R, et al., 2009. The case for VM-based cloudlets in mobile computing. IEEE Perv Comput, 8(4):14-23.

[24]Stojmenovic I, Wen S, 2014. The fog computing paradigm: scenarios and security issues. Proc Federated Conf on Computer Science and Information Systems, p.1-8.

[25]Tao M, Ota K, Dong M, 2017. Foud: integrating fog and cloud for 5G-enabled V2G networks. IEEE Network, 31(2):8-13.

[26]Tao XY, Ota K, Dong MX, et al., 2017. Performance guaranteed computation offloading for mobile-edge cloud computing. IEEE Wirel Commun Lett, 6(6):774-777.

[27]Vaquero LM, Rodero-Merino L, 2014. Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput Commun Rev, 44(5):27-32.

[28]Wu J, Dong MX, Ota K, et al., 2018a. Big data analysis-based secure cluster management for optimized control plane in software-defined networks. IEEE Trans Network Serv Manag, 15(1):27-38.

[29]Wu J, Dong MX, Ota K, et al., 2018b. FCSS: fog computing based content-aware filtering for security services in information centric social networks. IEEE Trans Emerg Top Comput, in press.

[30]Yi SH, Li C, Li Q, 2015. A survey of fog computing: concepts, applications and issues. Proc Workshop on Mobile Big Data, p.37-42.

[31]Zeng DZ, Gu L, Yao H, 2018. Towards energy efficient service composition in green energy powered cyber–physical fog systems. Fut Gener Comput Syst, in press.

[32]Zhang LY, Ding GR, Wu QH, et al., 2015. Byzantine attack and defense in cognitive radio networks: a survey. IEEE Commun Surv Tutor, 17(3):1342-1363.

[33]Zhang WZ, Lu K, Wang XP, 2018. Versionized process based on non-volatile random-access memory for fine-grained fault tolerance. Front Inform Technol Electron Eng, 19(2):192-205.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE