Full Text:   <2345>

Summary:  <1636>

CLC number: TP242

On-line Access: 2019-01-30

Received: 2018-09-11

Revision Accepted: 2018-11-26

Crosschecked: 2019-01-08

Cited: 0

Clicked: 6706

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qinyuan Ren

https://orcid.org/0000-0001-9487-2675

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.1 P.32-44

http://doi.org/10.1631/FITEE.1800554


Steering motion control of a snake robot via a biomimetic approach


Author(s):  Wenjuan Ouyang, Wenyu Liang, Chenzui Li, Hui Zheng, Qinyuan Ren, Ping Li

Affiliation(s):  State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   latepat@gmail.com

Key Words:  Snake robot, Central pattern generator, Cerebellar model articulation controller


Wenjuan Ouyang, Wenyu Liang, Chenzui Li, Hui Zheng, Qinyuan Ren, Ping Li. Steering motion control of a snake robot via a biomimetic approach[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(1): 32-44.

@article{title="Steering motion control of a snake robot via a biomimetic approach",
author="Wenjuan Ouyang, Wenyu Liang, Chenzui Li, Hui Zheng, Qinyuan Ren, Ping Li",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="1",
pages="32-44",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800554"
}

%0 Journal Article
%T Steering motion control of a snake robot via a biomimetic approach
%A Wenjuan Ouyang
%A Wenyu Liang
%A Chenzui Li
%A Hui Zheng
%A Qinyuan Ren
%A Ping Li
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 1
%P 32-44
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800554

TY - JOUR
T1 - Steering motion control of a snake robot via a biomimetic approach
A1 - Wenjuan Ouyang
A1 - Wenyu Liang
A1 - Chenzui Li
A1 - Hui Zheng
A1 - Qinyuan Ren
A1 - Ping Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 1
SP - 32
EP - 44
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800554


Abstract: 
We propose a biomimetic approach for steering motion control of a snake robot. Inspired by a vertebrate biological motor system paradigm, a hierarchical control scheme is adopted. In the control scheme, an artificial central pattern generator (CPG) is employed to generate serpentine locomotion in the robot. This generator outputs the coordinated desired joint angle commands to each lower-level effector controller, while the locomotion can be controlled through CPG modulation by a higher-level motion controller. The motion controller consists of a cerebellar model articulation controller (CMAC) and a proportional-derivative (PD) controller. Because of the fast learning ability of the CMAC, the proposed motion controller can drive the robot to track the desired orientation and adapt to unexpected perturbations. The PD controller is employed to expedite the convergence speed of the motion controller. Finally, both numerical studies and experiments proved that the proposed approach can help the snake robot achieve good tracking performance and adaptability in a varying environment.

一种基于仿生的机器蛇转向控制方法

摘要:提出一种基于仿生的机器蛇转向控制方法。分级控制方法灵感来自于脊椎动物生物运动系统。构建人工中枢模式发生器(CPG),驱动机器蛇产生可调蛇形运动。该发生器将协调所需的关节角度命令输出到每个较低级的执行控制器,而蛇形运动由更高级的运动控制器调制控制。设计结合小脑模型控制器(CMAC)和比例微分控制器(PD)控制机器蛇转向。得益于小脑模型控制器强大学习能力,所提方法可让机器蛇在转向控制中具有很强跟踪性和抗干扰性。PD控制器可加快运动控制器收敛速度。最后,仿真和实验验证了所提方法良好跟踪性和环境适应性。

关键词:机器蛇;中枢模式发生器;小脑模型控制器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Albus JS, 1975. A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dynam Syst Meas Contr, 97(3):220-227.

[2]Crespi A, Ijspeert AJ, 2008. Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans Robot, 24(1):75-87.

[3]Date H, Hoshi Y, Sampei M, 2000. Locomotion control of a snake-like robot based on dynamic manipulability. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.2236-2241.

[4]Gray J, 1946. The mechanism of locomotion in snakes. J Exp Biol, 23(2):101-120.

[5]Guo X, Ma SG, Li B, et al., 2018. A novel serpentine gait generation method for snake-like robots based on geometry mechanics. IEEE/ASME Trans Mech, 23(3):1249.

[6]Hirose S, 1993. Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford.

[7]Hooper SL, 2000. Central pattern generators. Curr Biol, 10(5):R176-R179.

[8]Inoue K, Ma SG, Jin CH, 2004. Neural oscillator network-based controller for meandering locomotion of snake-like robots. Proc IEEE Int Conf on Robotics and Automation, p.5064-5069.

[9]Ito M, 2000. Mechanisms of motor learning in the cerebellum. Brain Res, 886(1-2):237-245.

[10]Liljeback P, Haugstuen IU, Pettersen KY, 2012. Path following control of planar snake robots using a cascaded approach. IEEE Trans Contr Syst Technol, 20(1):111-126.

[11]Marder E, Bucher D, 2001. Central pattern generators and the control of rhythmic movements. Curr Biol, 11(23):R986-R996.

[12]Mattia F, Paolo A, Luigi F, 2004. Bio-inspired Emergent Control of Locomotion Systems. World Scientific Publishing, Singapore.

[13]Mukherjee J, Mukherjee S, Kar IN, 2017. Sliding mode control of planar snake robot with uncertainty using virtual holonomic constraints. IEEE Robot Autom Lett, 2(2):1077-1084.

[14]Ohno H, Hirose S, 2001. Design of slim slime robot and its gait of locomotion. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.707-715.

[15]Poggio T, Girosi F, 1990. Networks for approximation and learning. Proc IEEE, 78(9):1481-1497.

[16]Ryu JK, Chong NY, You BJ, et al., 2010. Locomotion of snake-like robots using adaptive neural oscillators. Intell Ser Robot, 3(1):1.

[17]Tanaka M, Matsuno F, 2014. Modeling and control of head raising snake robots by using kinematic redundancy. J Intell Robot Syst, 75(1):53-69.

[18]Wu XD, Ma SG, 2010. CPG-based control of serpentine locomotion of a snake-like robot. Mechatronics, 20(2):326-334.

[19]Yu JZ, Tan M, Chen J, et al., 2014. A survey on CPG-inspired control models and system implementation. IEEE Trans Neur Networks Learn Syst, 25(3):441-456.

[20]Zhang AF, Ma SG, Li B, et al., 2016. Adaptive controller design for underwater snake robot with unmatched uncertainties. Sci China Inform Sci, 59(5):052205.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE