CLC number: TM351
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-07-07
Cited: 0
Clicked: 7327
Citations: Bibtex RefMan EndNote GB/T7714
Jun-feng Jiang, Xiao-jun Zhou, Wei Zhao, Wei Li, Wen-dong Zhang. A fast integral sliding mode controller with an extended state observer for position control of permanent magnet synchronous motor servo systems[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(8): 1239-1250.
@article{title="A fast integral sliding mode controller with an extended state observer for position control of permanent magnet synchronous motor servo systems",
author="Jun-feng Jiang, Xiao-jun Zhou, Wei Zhao, Wei Li, Wen-dong Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="8",
pages="1239-1250",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900298"
}
%0 Journal Article
%T A fast integral sliding mode controller with an extended state observer for position control of permanent magnet synchronous motor servo systems
%A Jun-feng Jiang
%A Xiao-jun Zhou
%A Wei Zhao
%A Wei Li
%A Wen-dong Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 8
%P 1239-1250
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900298
TY - JOUR
T1 - A fast integral sliding mode controller with an extended state observer for position control of permanent magnet synchronous motor servo systems
A1 - Jun-feng Jiang
A1 - Xiao-jun Zhou
A1 - Wei Zhao
A1 - Wei Li
A1 - Wen-dong Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 8
SP - 1239
EP - 1250
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900298
Abstract: permanent magnet synchronous motor (PMSM) has been widely used in position control applications. Its performance is not satisfactory due to internal uncertainties and external load disturbances. To enhance the control performance of PMSM systems, a new method that has fast response and good robustness is proposed in this study. First, a modified integral terminal sliding mode controller is developed, which has a fast-sliding surface and a continuous reaching law. Then, an extended state observer is applied to measure the internal and external disturbances. Therefore, the disturbances can be compensated for in a feedforward manner. Compared with other sliding mode methods, the proposed method has faster response and better robustness against system disturbances. In addition, the position tracking error can converge to zero in a finite time. Simulation and experimental results reveal that the proposed control method has fast response and good robustness, and enables high-precision control.
[1]Al-Ghanimi A, Zheng J, Man Z, 2017. A fast non-singular terminal sliding mode control based on perturbation estimation for piezoelectric actuators systems. Int J Contr, 90(3):480-491.
[2]Baik IC, Kim KH, Youn MJ, 2000. Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique. IEEE Trans Contr Syst Technol, 8(1):47-54.
[3]Barkat S, Tlemçani A, Nouri H, 2011. Noninteracting adaptive control of PMSM using interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst, 19(5):925-936.
[4]Bobtsov A, Bazylev D, Pyrkin A, et al., 2017. A robust nonlinear position observer for synchronous motors with relaxed excitation conditions. Int J Contr, 90(4):813-824.
[5]Chaoui H, Sicard P, 2012. Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction. IEEE Trans Ind Electron, 59(2):1123-1133.
[6]Chen QH, Wang QF, Wang T, 2015. Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator. Front Inform Technol Electron Eng, 16(11):957-968.
[7]Chiu CS, 2012. Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems. Automatica, 48(2):316-326.
[8]El-Sousy FFM, 2010. Hybrid H∞-based wavelet-neural- network tracking control for permanent-magnet synchronous motor servo drives. IEEE Trans Ind Electron, 57(9):3157-3166.
[9]El-Sousy FFM, 2013. Intelligent optimal recurrent wavelet Elman neural network control system for permanent- magnet synchronous motor servo drive. IEEE Trans Ind Inform, 9(4):1986-2003.
[10]Feng G, Liu YF, Huang LP, 2004. A new robust algorithm to improve the dynamic performance on the speed control of induction motor drive. IEEE Trans Power Electron, 19(6):1614-1627.
[11]Feng Y, Yu XH, Man ZH, 2002. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38(12):2159-2167.
[12]Feng Y, Han FL, Yu XH, 2014. Chattering free full-order sliding-mode control. Automatica, 50(4):1310-1314.
[13]Han JQ, 2009. From PID to active disturbance rejection control. IEEE Trans Ind Electron, 56(3):900-906.
[14]Jiang JF, Zhou XJ, 2019. A robust and fast sliding mode controller for position tracking control of permanent magnetic synchronous motor. 3rd Int Conf on Power, Energy and Mechanical Engineering, p.95-99.
[15]Li SH, Liu ZG, 2009. Adaptive speed control for permanent- magnet synchronous motor system with variations of load inertia. IEEE Trans Ind Electron, 56(8):3050-3059.
[16]Li SH, Sun HB, Yang J, et al., 2015. Continuous finite-time output regulation for disturbed systems under mismatching condition. IEEE Trans Autom Contr, 60(1):277- 282.
[17]Man ZH, Paplinski AP, Wu HR, 1994. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Autom Contr, 39(12):2464-2469.
[18]Miklosovic R, Gao ZQ, 2004. A robust two-degree-of-freedom control design technique and its practical application. IEEE Industry Applications Conf, p.1495-1502.
[19]Nguyen AT, Rafaq MS, Choi HH, et al., 2018. A model reference adaptive control based speed controller for a surface- mounted permanent magnet synchronous motor drive. IEEE Trans Ind Electron, 65(12):9399-9409.
[20]Nguyen HT, Jung JW, 2018. Finite control set model predictive control to guarantee stability and robustness for surface- mounted PM synchronous motors. IEEE Trans Ind Electron, 65(11):8510-8519.
[21]Saadaoui O, Khlaief A, Abassi M, et al., 2017. A sliding-mode observer for high-performance sensorless control of PMSM with initial rotor position detection. Int J Contr, 90(2):393-408.
[22]Su JB, Qiu WB, Ma HY, et al., 2004. Calibration-free robotic eye-hand coordination based on an auto disturbance- rejection controller. IEEE Trans Robot, 20(5):899-907.
[23]Su YX, Zheng CH, Duan BY, 2005. Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors. IEEE Trans Ind Electron, 52(3):814-823.
[24]Wai RJ, 2001. Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network. IEEE Trans Ind Electron, 48(5):926-944.
[25]Wang HM, Li SH, Lan QX, et al., 2017. Continuous terminal sliding mode control with extended state observer for PMSM speed regulation system. Trans Inst Meas Contr, 39(8):1195-1204.
[26]Wang M, Yang JQ, Zhang X, et al., 2018. Accurate two- degree-of-freedom discrete-time current controller design for PMSM using complex vectors. Front Inform Technol Electron Eng, 19(4):569-581.
[27]Wu D, Chen K, Wang XK, 2007. Tracking control and active disturbance rejection with application to noncircular machining. Int J Mach Tool Manuf, 47(15):2207-2217.
[28]Yang J, Li SH, Su JY, et al., 2013. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica, 49(7):2287-2291.
[29]Yang JQ, Yin RS, Zhang XJ, et al., 2017. Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy. Front Inform Technol Electron Eng, 18(8):1151-1166.
[30]Yu SH, Yu XH, Shirinzadeh B, et al., 2005. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 41(11):1957-1964.
[31]Zeng ZL, Cheng LM, Qian L, et al., 2002. A newly robust controller design for the position control of permanent- magnet synchronous motor. IEEE Trans Ind Electron, 49(3):558-565.
[32]Zhang XY, 2016. Application of direct adaptive fuzzy sliding mode control into a class of non-affine discrete nonlinear systems. Front Inform Technol Electron Eng, 17(12): 1331-1343.
[33]Zhi DW, Xu L, Williams BW, 2010. Model-based predictive direct power control of doubly fed induction generators. IEEE Trans Power Electron, 25(2):341-351.
Open peer comments: Debate/Discuss/Question/Opinion
<1>