Full Text:   <4211>

Summary:  <1566>

CLC number: TN99

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-08-24

Cited: 0

Clicked: 5468

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xingye Fan

https://orcid.org/0000-0002-8018-7236

Ruozhou Li

https://orcid.org/0000-0002-2615-9349

Jing Yan

https://orcid.org/0000-0003-3057-7890

Ying Yu

https://orcid.org/0000-0001-5964-663X

Yuming Fang

https://orcid.org/0000-0001-6998-0164

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.9 P.1270-1276

http://doi.org/10.1631/FITEE.2000278


Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator


Author(s):  Xingye Fan, Ruozhou Li, Jing Yan, Yuming Fang, Ying Yu

Affiliation(s):  College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; more

Corresponding email(s):   jing.yan@njupt.edu.cn, ying_yu_001@163.com

Key Words:  Tunable stepped-impedance resonator (SIR), Liquid crystal, Coplanar waveguide (CPW)


Share this article to: More <<< Previous Article|

Xingye Fan, Ruozhou Li, Jing Yan, Yuming Fang, Ying Yu. Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(9): 1270-1276.

@article{title="Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator",
author="Xingye Fan, Ruozhou Li, Jing Yan, Yuming Fang, Ying Yu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="9",
pages="1270-1276",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000278"
}

%0 Journal Article
%T Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator
%A Xingye Fan
%A Ruozhou Li
%A Jing Yan
%A Yuming Fang
%A Ying Yu
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 9
%P 1270-1276
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000278

TY - JOUR
T1 - Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator
A1 - Xingye Fan
A1 - Ruozhou Li
A1 - Jing Yan
A1 - Yuming Fang
A1 - Ying Yu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 9
SP - 1270
EP - 1276
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000278


Abstract: 
A tunable stepped-impedance resonator using liquid crystal is demonstrated. Two resonant frequencies at 3.367 and 7.198 GHz are realized and can be continuously tuned by external applied voltages. Continuous tunable ranges of 52 and 210 MHz have been achieved at a particularly low driving voltage of 14 V, which shows good agreement with the simulation results. The voltage-induced hysteresis phenomenon is also investigated. This device also has a low insertion loss of −2.9 and −4 dB for the two resonant frequencies and the return losses are less than −21.5 dB. This work provides a new protocol to realize a tunable frequency for communication systems.

电可调液晶共面波导阶梯阻抗谐振器

樊星叶1,李若舟1,2,严静1,方玉明1,2,于映1,2
1南京邮电大学电子与光学工程学院、微电子学院,中国南京市,210023
2南京邮电大学射频集成与微组装国家地方联合工程实验室,中国南京市,210023
摘要:提出一种液晶可调阶梯阻抗谐振器。该谐振器分别在3.367 GHz和7.198 GHz处谐振,这两个频点可通过对液晶层加载电压实现连续调节。实验表明仅需施加14 V的外加电压,即可实现52 MHz和210 MHz的调谐范围,并与仿真结果吻合;在此基础上,研究了驱动过程中电压带来的迟滞效应。该器件在两个频点处的插入损耗分别为−2.9 dB和−4 dB,回波损耗均小于−21.5 dB。该谐振器可应用于需要频率连续可调的各类通信系统中。

关键词:软测量;有监督贝叶斯网络;隐变量;局部加权建模;质量预测

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Algorri JF, Urruchi V, García-Cámara B, et al., 2016. Liquid crystal microlenses for autostereoscopic displays. Materials, 9(1):36.

[2]Bi XK, Zhang X, Wong SW, et al., 2020. Design of notched-wideband bandpass filters with reconfigurable bandwidth based on terminated cross-shaped resonators. IEEE Access, 8:37416-37427.

[3]Cai T, Liu QK, Shi YC, et al., 2010. An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide. Appl Phys Lett, 97(12):121109.

[4]Huang T, Jiang D, Shao ZH, 2014. Research of a novel bandpass filter using nematic liquid crystal loaded by inverted microstrip. IEEE Int Conf on Communication Problem-Solving, p.514-516.

[5]Jiang D, Liu YP, Li XY, et al., 2019. Tunable microwave bandpass filters with complementary split ring resonator and liquid crystal materials. IEEE Access, 7:126265-126272.

[6]Liu XG, Katehi LPB, Chappell WJ, et al., 2009. A 3.4–6.2 GHz continuously tunable electrostatic MEMS resonator with quality factor of 460–530. IEEE MTT-S Int Microwave Symp Digest, p.1149-1152.

[7]Liu YP, Jiang D, Cao WP, et al., 2016. Microwave tunable split ring resonator bandpass filter using nematic liquid crystal materials. Optik, 127(21):10216-10222.

[8]Makimoto M, Yamashita S, 1980. Bandpass filters using parallel coupled strip-line stepped impedance resonators. IEEE MTT-S Int Microwave Symp Digest, p.141-143.

[9]Maune B, Lawson R, Gunn G, et al., 2003. Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers. Appl Phys Lett, 83(23):4689-4691.

[10]Mirfatah A, Laurin JJ, 2009. Tunable hairpin resonator based on liquid crystal. Proc 13th Int Symp on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, p.6-9.

[11]Navarro JA, Chang K, 1993. Varactor-tunable uniplanar ring resonators. IEEE Trans Microw Theory Techn, 41(5):760-766.

[12]Sanada A, Takehara H, Yamamoto T, et al., 2002. λ/4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide. IEEE MTT-S Int Microwave Symp Digest, p.385-388.

[13]Semenov AA, Karmanenko SF, Demidov VE, et al., 2006. Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators. Appl Phys Lett, 88(3):033503.

[14]Shi ZD, Fang L, Zhong LB, 2017. MEMS-based filter integrating tunable Fabry-Perot cavity and grating. Opt Commun, 402:472-477.

[15]Simons RN, Ponchak GE, 1988. Modeling of some coplanar waveguide discontinuities. IEEE MTT-S Int Microwave Symp Digest, p.297-300.

[16]Stefanini R, Martinez JD, Chatras M, et al., 2011. Ku band high-Q tunable surface-mounted cavity resonator using RF MEMS varactors. IEEE Microw Wirel Compon Lett, 21(5):237-239.

[17]Teng C, Cheong P, Tarn KW, 2019. Reconfigurable wideband bandpass filters based on dual cross-shaped resonator. IEEE MTT-S Int Wireless Symp, p.1-3.

[18]Ustinov AB, Tiberkevich VS, Srinivasan G, et al., 2006. Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: experiment and theory. J Appl Phys, 100(9):093905.

[19]Yaghmaee P, Fumeaux C, Bates B, et al., 2012a. Frequency tunable S-band resonator using nematic liquid crystal. Electron Lett, 48(13):798-800.

[20]Yaghmaee P, Horestani AK, Bates B, et al., 2012b. A multi-layered tunable stepped-impedance resonator for liquid crystal characterization. Asia Pacific Microwave Conf Proc, p.776-778.

[21]Yaghmaee P, Karabey OH, Bates B, et al., 2013. Electrically tuned microwave devices using liquid crystal technology. Int J Antenn Propag, 2013:824214.

[22]Yang DK, Wu ST, 2006. Effects of electric field on liquid crystals. In: Yang DK, Wu ST (Eds.), Fundamentals of Liquid Crystal Devices. John Wiley, Chichester, p.107-112.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE