CLC number: TN82
On-line Access: 2020-02-27
Received: 2019-08-30
Revision Accepted: 2020-01-05
Crosschecked: 2020-01-16
Cited: 0
Clicked: 5658
Citations: Bibtex RefMan EndNote GB/T7714
Hai-yang Xia, Jin-can Hu, Tao Zhang, Lian-ming Li, Fu-chun Zheng. Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 174-181.
@article{title="Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process",
author="Hai-yang Xia, Jin-can Hu, Tao Zhang, Lian-ming Li, Fu-chun Zheng",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="174-181",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900453"
}
%0 Journal Article
%T Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process
%A Hai-yang Xia
%A Jin-can Hu
%A Tao Zhang
%A Lian-ming Li
%A Fu-chun Zheng
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 174-181
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900453
TY - JOUR
T1 - Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process
A1 - Hai-yang Xia
A1 - Jin-can Hu
A1 - Tao Zhang
A1 - Lian-ming Li
A1 - Fu-chun Zheng
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 174
EP - 181
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900453
Abstract: We propose a miniaturized wideband metasurface antenna for 60-GHz antenna-in-package applications. With the glass integrated passive device manufacturing technology, we introduce a coplanar-waveguide-fed (CPW-fed) ring resonator to characterize the material properties of the glass substrate. The proposed antenna is designed on a high dielectric constant glass substrate to achieve antenna miniaturization. Because of the existence of gaps between patch units compared with the conventional rectangular patch in the TM10 mode, the radiation aperture of this proposed antenna is reduced. Located right above the center feeding CPW-fed bow-tie slot, the metasurface patch is realized, supporting the TM10 mode and antiphase TM20 mode simultaneously to improve the bandwidth performance. Using a probe-based antenna measurement setup, the antenna prototype is measured, demonstrating a 10-dB impedance bandwidth from 53.3 to 67 GHz. At 60 GHz, the antenna gain measured is about 5 dBi in the boresight direction with a compact radiation aperture of 0.31λ0×0.31λ0 and a thickness of 0.06λ0.
[1]Balanis CA, 2016. Antenna Theory: Analysis and Design. John Wiley & Sons, Hoboken.
[2]Biglarbegian B, Nezhad-Ahmadi MR, Safavi-Naeini S, 2011. Integrated microstrip-fed slot array antenna for emerging wireless application in IPD technology. Proc IEEE MTT-S Int Microwave Workshop Series on Millimeter Wave Integration Technologies, p.41-44.
[3]Calvez C, Person C, Coupez JP, et al., 2011. Miniaturized hybrid antenna combining Si and IPD™ technologies for 60 GHz WLAN applications. Proc IEEE Int Symp on Antennas and Propagation, p.1357-1359.
[4]Chang CC, Lin CC, Cheng WK, 2015. Fully integrated 60 GHz switched-beam phased antenna array in glass-IPD technology. Electron Lett, 51(11):804-806.
[5]Cheng WK, Chang CC, Tsai TH, 2018. Design of 60 GHz circular-polarization antenna array in glass-IPD for monostatic radar MMICs. Proc IEEE Int Symp on Radio- Frequency Integration Technology, p.1-3.
[6]da Silva CRCM, Kosloff J, Chen C, et al., 2018. Beamforming training for IEEE 802.11ay millimeter wave systems. Proc Information Theory and Applications Workshop, p.1-9.
[7]Ghasempour Y, da Silva CRCM, Cordeiro C, et al., 2017. IEEE 802.11ay: next-generation 60 GHz communication for 100 Gb/s Wi-Fi. IEEE Commun Mag, 55(12):186-192.
[8]Hosono R, Uemichi Y, Nukaga O, et al., 2016. 70-GHz band corporate-feed array antenna with multi-layered glass substrate. Proc IEEE Int Symp on Antennas and Propagation, p.799-800.
[9]Huang JF, Kuo CW, 1998. CPW-fed bow-tie slot antenna. Microw Opt Technol Lett, 19(5):358-360.
[10]Lantéri J, Dussopt L, Pilard R, et al., 2010. 60 GHz antennas in HTCC and glass technology. Proc the 4th European Conf on Antennas and Propagation, p.1-4.
[11]Liu W, Chen ZN, Qing XM, 2015. Metamaterial-based low- profile broadband aperture-coupled grid-slotted patch antenna. IEEE Trans Antenn Propag, 63(7):3325-3329.
[12]Liu W, Chen ZN, Qing XM, et al., 2017. Miniaturized wideband metasurface antennas. IEEE Trans Antenn Propag, 65(12):7345-7349.
[13]Tavakol V, Qi F, Ocket I, et al., 2010. CPW-fed slot bow-tie antenna at 90 GHz for a mm-wave detector matrix. Proc 4th European Conf on Antennas and Propagation, p.1-3.
[14]Thompson DC, Tantot O, Jallageas H, et al., 2004. Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Trans Microw Theory Techn, 52(4):1343-1352.
[15]Wong KL, 2004. Compact and Broadband Microstrip Antennas. John Wiley & Sons, New York.
[16]Zhang YP, Liu DX, 2009. Antenna-on-chip and antenna-in- package solutions to highly integrated millimeter-wave devices for wireless communications. IEEE Trans Antenn Propag, 57(10):2830-2841.
[17]Zou G, Gronqvist H, Starsk JP, et al., 2002. Characterization of liquid crystal polymer for high frequency system-in-a- package applications. IEEE Trans Adv Packag, 25(4): 503-508.
Open peer comments: Debate/Discuss/Question/Opinion
<1>