CLC number: TN454
On-line Access: 2021-09-10
Received: 2020-06-16
Revision Accepted: 2021-03-24
Crosschecked: 2021-08-31
Cited: 0
Clicked: 5747
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-3282-1618
Yang Gao, Fan Zhang, Yingying Qiao, Jiawei Zang, Lei Li, Xiaobang Shang. A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(9): 1260-1269.
@article{title="A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis",
author="Yang Gao, Fan Zhang, Yingying Qiao, Jiawei Zang, Lei Li, Xiaobang Shang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="9",
pages="1260-1269",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000292"
}
%0 Journal Article
%T A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis
%A Yang Gao
%A Fan Zhang
%A Yingying Qiao
%A Jiawei Zang
%A Lei Li
%A Xiaobang Shang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 9
%P 1260-1269
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000292
TY - JOUR
T1 - A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis
A1 - Yang Gao
A1 - Fan Zhang
A1 - Yingying Qiao
A1 - Jiawei Zang
A1 - Lei Li
A1 - Xiaobang Shang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 9
SP - 1260
EP - 1269
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000292
Abstract: This paper presents a methodology of designing an amplifier integrated with a microstrip filter using an active coupling matrix. The microstrip filter is directly coupled to the active device, and the integrated filter amplifier can achieve filtering as well as matching functionalities, simultaneously, eliminating the need for separate matching networks. The filter amplifier is represented by an active coupling matrix, with additional columns and rows in the matrix corresponding to the active transistor. The matrix can be used to calculate the S-parameter responses (i.e., the return loss and the gain) and the initial dimensions of the integrated device. Moreover, the integration of a filter and an amplifier leads to a reduced loss and a more compact architecture of the devices. An X-band microstrip filter amplifier has been designed and demonstrated as an example. microstrip technology has been chosen because of its appealing advantages of easy fabrication, low cost, and most importantly, easy integration with active devices.
[1]Aljarosha A, Zaman AU, Maaskant R, 2017. A wideband contactless and bondwire-free MMIC to waveguide transition. IEEE Microw Wirel Compon Lett, 27(5):437-439.
[2]Bahl IJ, 2008. Fundamentals of RF and Microwave Transistor Amplifiers. Wiley, Hoboken, USA.
[3]Cameron RJ, 2011. Advanced filter synthesis. IEEE Microw Mag, 12(6):42-61.
[4]Cameron RJ, Kudsia CM, Mansour RR, 2007. Microwave Filters for Communication Systems: Fundamentals, Design and Applications. Wiley, Hoboken, USA.
[5]Chang CY, Itoh T, 1990. Microwave active filters based on coupled negative resistance method. IEEE Trans Microw Theory Tech, 38(12):1879-1884.
[6]Chen KL, Lee J, Chappell WC, et al., 2013a. Co-design of highly efficient power amplifier and high-Q output bandpass filter. IEEE Trans Microw Theory Tech, 61(11):3940-3950.
[7]Chen KL, Lee TC, Peroulis D, 2013b. Co-design of multi-band high-efficiency power amplifier and three-pole high-Q tunable filter. IEEE Microw Wirel Compon Lett, 23(12):647-649.
[8]Chun YH, Yun SW, Rhee JK, 2002. Active impedance inverter: analysis and its application to the bandpass filter design. Proc IEEE MTT-S Int Microwave Symp, p.1911-1914.
[9]Chun YH, Lee JR, Yun SW, et al., 2005. Design of an RF low-noise bandpass filter using active capacitance circuit. IEEE Trans Microw Theory Tech, 53(2):687-695.
[10]Courtney PG, Zeng J, Tran T, et al., 2015. 120W Ka band power amplifier utilizing GaN MMICs and coaxial waveguide spatial power combining. Proc IEEE Compound Semiconductor Integrated Circuit Symp, p.1-4.
[11]Darcel L, Dueme P, Funck R, et al., 2005. New MMIC approach for low noise high order active filters. Proc IEEE MTT-S Int Microwave Symp, p.787-790.
[12]Gao Y, Powell J, Shang XB, et al., 2018. Coupling matrix-based design of waveguide filter amplifiers. IEEE Trans Microw Theory Tech, 66(12):5300-5309.
[13]Gao Y, Shang XB, Guo C, et al., 2019. Integrated waveguide filter amplifier using the coupling matrix technique. IEEE Microw Wirel Compon Lett, 29(4):267-269.
[14]Gao Y, Zhang F, Lv X, et al., 2020. Substrate integrated waveguide filter–amplifier design using active coupling matrix technique. IEEE Trans Microw Theory Tech, 68(5):1706-1716.
[15]Gonzalez G, 1996. Microwave Transistor Amplifiers: Analysis and Design (2nd Ed.). Prentice Hall, Pearson, UK.
[16]Ito M, Maruhashi K, Kishimoto S, et al., 2004. 60-GHz-band coplanar MMIC active filters. IEEE Trans Microw Theory Tech, 52(3):743-750.
[17]Kumar TB, Ma KX, Yeo KS, 2017. A 60-GHz coplanar waveguide-based bidirectional LNA in SiGe BiCMOS. IEEE Microw Wirel Compon Lett, 27(8):742-744.
[18]Kurokawa K, 1965. Power waves and the scattering matrix. IEEE Trans Microw Theory Tech, 13(2):194-202.
[19]Lin YS, Wu JF, Hsia WF, et al., 2013. Design of electronically switchable single-to-balanced bandpass low-noise amplifier. IET Microw Antenn Propag, 7(7):510-517.
[20]Pozar DM, 2012. Microwave Engineering (4th Ed.). Wiley, New York, USA.
[21]Schwierz F, Liou JJ, 2002. Modern Microwave Transistors: Theory, Design, and Performance. Wiley, Hoboken, USA.
[22]Strang G, 2016. Introduction to Linear Algebra (5th Ed.). Wellesley-Cambridge Press, Wellesley, USA.
Open peer comments: Debate/Discuss/Question/Opinion
<1>