Full Text:   <4607>

Summary:  <1286>

CLC number: TN304

On-line Access: 2021-10-08

Received: 2020-07-08

Revision Accepted: 2020-11-11

Crosschecked: 2021-09-02

Cited: 0

Clicked: 5188

Citations:  Bibtex RefMan EndNote GB/T7714


Fabi Zhang


Zujun Qin


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.10 P.1370-1378


Band-gap tunable (GaxIn1−x)2O3 layer grown by magnetron sputtering

Author(s):  Fabi Zhang, Jinyu Sun, Haiou Li, Juan Zhou, Rong Wang, Tangyou Sun, Tao Fu, Gongli Xiao, Qi Li, Xingpeng Liu, Xiuyun Zhang, Daoyou Guo, Xianghu Wang, Zujun Qin

Affiliation(s):  Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; more

Corresponding email(s):   zhangfabi@outlook.com, qinzj@guet.edu.cn

Key Words:  (GaxIn1−x)2O3 films, Band-gap tunable, Magnetron sputtering

Fabi Zhang, Jinyu Sun, Haiou Li, Juan Zhou, Rong Wang, Tangyou Sun, Tao Fu, Gongli Xiao, Qi Li, Xingpeng Liu, Xiuyun Zhang, Daoyou Guo, Xianghu Wang, Zujun Qin. Band-gap tunable (GaxIn1−x)2O3 layer grown by magnetron sputtering[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1370-1378.

@article{title="Band-gap tunable (GaxIn1−x)2O3 layer grown by magnetron sputtering",
author="Fabi Zhang, Jinyu Sun, Haiou Li, Juan Zhou, Rong Wang, Tangyou Sun, Tao Fu, Gongli Xiao, Qi Li, Xingpeng Liu, Xiuyun Zhang, Daoyou Guo, Xianghu Wang, Zujun Qin",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Band-gap tunable (GaxIn1−x)2O3 layer grown by magnetron sputtering
%A Fabi Zhang
%A Jinyu Sun
%A Haiou Li
%A Juan Zhou
%A Rong Wang
%A Tangyou Sun
%A Tao Fu
%A Gongli Xiao
%A Qi Li
%A Xingpeng Liu
%A Xiuyun Zhang
%A Daoyou Guo
%A Xianghu Wang
%A Zujun Qin
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 10
%P 1370-1378
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000330

T1 - Band-gap tunable (GaxIn1−x)2O3 layer grown by magnetron sputtering
A1 - Fabi Zhang
A1 - Jinyu Sun
A1 - Haiou Li
A1 - Juan Zhou
A1 - Rong Wang
A1 - Tangyou Sun
A1 - Tao Fu
A1 - Gongli Xiao
A1 - Qi Li
A1 - Xingpeng Liu
A1 - Xiuyun Zhang
A1 - Daoyou Guo
A1 - Xianghu Wang
A1 - Zujun Qin
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 10
SP - 1370
EP - 1378
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000330

Multicomponent oxide (GaxIn1−x)2O3 films are prepared on (0001) sapphire substrates to realize a tunable band-gap by magnetron sputtering technology followed by thermal annealing. The optical properties and band structure evolution over the whole range of compositions in ternary compounds (GaxIn1−x)2O3 are investigated in detail. The X-ray diffraction spectra clearly indicate that (GaxIn1−x)2O3 films with Ga content varying from 0.11 to 0.55 have both cubic and monoclinic structures, and that for films with Ga content higher than 0.74, only the monoclinic structure appears. The transmittance of all films is greater than 86% in the visible range with sharp absorption edges and clear fringes. In addition, a blue shift of ultraviolet absorption edges from 380 to 250 nm is noted with increasing Ga content, indicating increasing band-gap energy from 3.61 to 4.64 eV. The experimental results lay a foundation for the application of transparent conductive compound (GaxIn1−x)2O3 thin films in photoelectric and photovoltaic industry, especially in display, light-emitting diode, and solar cell applications.


摘要:采用磁控溅射技术和热退火技术在(0001)蓝宝石衬底上制备了多组分氧化物(GaxIn1−x)2O3薄膜,实现可调带隙。详细研究了三元化合物(GaxIn1−x)2O3在整个组成范围内的光学性质和能带结构演化。X射线衍射谱表明,Ga含量在0.11至0.55之间的(GaxIn1−x)2O3薄膜既有立方结构,也有单斜结构,而Ga含量高于0.74的(GaxIn1?x)2O3薄膜只有单斜结构。在可见光范围,所有薄膜透光率均高于86%,吸收边清晰,条纹清晰。此外,随着Ga含量增加,紫外吸收边出现380至250 nm的蓝移,表明禁带能从3.61 eV增加至4.64 eV。实验结果为透明导电化合物半导体(GaxIn1−x)2O3薄膜在光电和光伏行业的应用,特别是在显示器、发光二极管和太阳能电池的应用奠定了基础。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abdullah SA, Sahdan MZ, Nafarizal N, et al., 2018. Influence of substrate annealing on inducing Ti3+ and oxygen vacancy in TiO2 thin films deposited via RF magnetron sputtering. Appl Surf Sci, 462:575-582.

[2]Baldini M, Gogova D, Irmscher K, et al., 2014. Heteroepitaxy of Ga2(1−x)In2xO3 layers by MOVPE with two different oxygen sources. Cryst Res Technol, 49(8):552-557.

[3]Beji N, Souli M, Reghima M, et al., 2016. Study on the physical properties of europium doped indium oxide thin films. Mater Sci Semicond Process, 56:20-28.

[4]Bellaiche L, Mattila T, Wang LW, et al., 1999. Resonant hole localization and anomalous optical bowing in InGaN alloys. Appl Phys Lett, 74:1842.

[5]Cabello G, Lillo L, Caro C, et al., 2008. Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium. J Non-Cryst Sol, 354(33):3919-3928.

[6]Chang TH, Chang SJ, Chiu CJ, et al., 2015a. Bandgap-engineered in indium-gallium-oxide ultraviolet phototransistors. IEEE Photon Technol Lett, 27(8):915-918.

[7]Chang TH, Chang SJ, Weng WY, et al., 2015b. Amorphous indium–gallium–oxide UV photodetectors. IEEE Photon Technol Lett, 27(19):2083-2086.

[8]Chen F, Ding S, Su WT, 2019. The synthesis and tunable optical properties of two-dimensional alloyed Mo1−xWxS2 monolayer with in-plane composition modulations (0≤x≤1). J Alloys Compd, 784:213-219.

[9]Chen KY, Yang CC, Su YK, et al., 2019. Impact of oxygen vacancy on the photo-electrical properties of In2O3-based thin-film transistor by doping Ga. Materials, 12(5):737.

[10]Chen ZM, Zhuo Y, Tu WB, et al., 2017. Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes. Appl Phys Lett, 110(24):242101.

[11]Demin IE, Kozlov AG, 2017. Effect of composition on properties of In2O3–Ga2O3 thin films. J Phys Conf Ser, 858:012009.

[12]Hassa A, von Wenckstern H, Splith D, et al., 2019. Structural, optical, and electrical properties of orthorhombic κ-(InxGa1−x)2O3 thin films. APL Mater, 7(2):022525.

[13]Hsu CM, Tzou WC, Yang CF, et al., 2015. Investigation of the high mobility IGZO thin films by using co-sputtering method. Materials, 8(5):2769-2781.

[14]Jiang FX, Xu XH, Zhang J, et al., 2011. Room temperature ferromagnetism in metallic and insulating (In1−xFex)2O3 thin films. J Appl Phys, 109(5):053907.

[15]Jothibas M, Manoharan C, Ramalingam S, et al., 2014. Spectroscopic analysis, structural, microstructural, optical and electrical properties of Zn-doped In2O3 thin films. Spectrochim Acta A Mol Biomol Spectrosc, 122: 171-178.

[16]Kang J, Tongay S, Li JB, et al., 2013. Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing. J Appl Phys, 113(14):143703.

[17]Kokubun Y, Abe T, Nakagomi S, 2010. Sol-gel prepared (Ga1−xInx)2O3 thin films for solar-blind ultraviolet photodetectors. Phys Stat Sol A Appl Mater Sci, 207(7):1741-1745.

[18]Kranert C, Lenzner J, Jenderka M, et al., 2014. Lattice parameters and Raman-active phonon modes of (InxGa1–x)2O3 for x < 0.4. J Appl Phys, 116(1):013505.

[19]Labram JG, Treat ND, Lin YH, et al., 2016. Energy quantization in solution-processed layers of indium oxide and their application in resonant tunneling diodes. Adv Funct Mater, 26(10):1656-1663.

[20]Lee HY, Liu JT, Lee CT, 2018. Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors. IEEE Photon Technol Lett, 30(6):549-552.

[21]Lee SR, Wright AF, Crawford MH, et al., 1999. The band-gap bowing of AlxGa1−xN alloys. Appl Phys Lett, 74(22):3344.

[22]Maccioni MB, Ricci F, Fiorentini V, 2016. Properties of (Ga1−xInx)2O3 over the whole x range. J Phys Condens Matt, 28(22):224001.

[23]Manoharan C, Jothibas M, Jeyakumar J, et al., 2015. Structural, optical and electrical properties of Zr-doped In2O3 thin films. Spectrochim Acta A Mol Biomol Spectrosc, 145: 47-53.

[24]Mathen JJ, Madhavan J, Thomas A, et al., 2017. Transparent ZnO–PVA binary composite for UV-A photo detector: optical, electrical and thermal properties followed by laser induced fluorescence. J Mater Sci Mater Electron, 28(10):7190-7203.

[25]Mottram DA, Lin YH, Pattanasattayavong P, et al., 2016. Quasi two-dimensional dye-sensitized In2O3 phototransistors for ultrahigh responsivity and photosensitivity photodetector applications. ACS Appl Mater Interf, 8(7):4894-4902.

[26]Oshima T, Kato Y, Oda M, et al., 2017. Epitaxial growth of γ-(AlxGa1−x)O3 alloy films for band-gap engineering. Appl Phys Expr, 10(5):051104.

[27]Peelaers H, Steiauf D, Varley JB, et al., 2015. (InxGa1−x)2O3 alloys for transparent electronics. Phys Rev B Cover Condens Matt Mater Phys, 92(8):085206.

[28]Pourhashemi A, Farrell RM, Cohen DA, et al., 2015. High-power blue laser diodes with indium tin oxide cladding on semipolar GaN substrates. Appl Phys Lett, 106(11):111105.

[29]Premkumar M, Vadivel S, 2017. Effect of annealing temperature on structural, optical and humidity sensing properties of indium tin oxide (ITO) thin films. J Mater Sci Mater Electron, 28(12):8460-8466.

[30]Priya BS, Shanthi M, Manoharan C, et al., 2017. Hydrothermal synthesis of Ga-doped In2O3 nanostructure and its structural, optical and photocatalytic properties. Mater Sci Semicond Process, 71:357-365.

[31]Prozheeva V, Hölldobler R, von Wenckstern H, et al., 2018. Effects of alloy composition and Si-doping on vacancy defect formation in (InxGa1–x)2O3 thin films. J Appl Phys, 123(12):125705.

[32]Ramzan M, Kaewmaraya T, Ahuja R, 2013. Molecular dynamics study of amorphous Ga-doped In2O3: a promising material for phase change memory devices. Appl Phys Lett, 103(7):072113.

[33]Reddy IN, Reddy CV, Cho M, et al., 2017. Structural, optical and XPS study of thermal evaporated In2O3 thin films. Mater Res Expr, 4(8):086406.

[34]Schmidt-Grund R, Kranert C, Böntgen T, et al., 2014. Dielectric function in the NIR-VUV spectral range of (InxGa1−x)2O3 thin films. J Appl Phys, 116(5):053510.

[35]Senthilkumar V, Vickraman P, 2010. Annealing temperature dependent on structural, optical and electrical properties of indium oxide thin films deposited by electron beam evaporation method. Curr Appl Phys, 10(3):880-885.

[36]Suzuki N, Kaneko K, Fujita S, 2014. Growth of corundum-structured (InxGa1−x)2O3 alloy thin films on sapphire substrates with buffer layers. J Cryst Growth, 401:670-672.

[37]Tauc J, Menth A, 1972. States in the gap. J Non-Cryst Sol, 8-10: 569-585.

[38]Veeraswamy Y, Vijayakumr Y, Reddy MV, et al., 2013. Structural and optical characterization of indium oxide thin films by vacuum thermal evaporation. Int Conf on Advanced Nanomaterials & Emerging Engineering Technologies, p.502-505.

[39]von Wenckstern H, 2019. 6-properties of (In, Ga)2O3 alloys. In: Pearton S, Ren F, Mastro M (Eds.), Gallium Oxide. Elsevier, Amsterdam, p.119-148.

[40]von Wenckstern H, Splith D, Purfürst M, et al., 2015. Structural and optical properties of (In, Ga)2O3 thin films and characteristics of Schottky contacts thereon. Semicond Sci Technol, 30(2):024005.

[41]Wang X, Chen ZW, Zhang FB, et al., 2016. Influence of substrate temperature on the properties of (AlGa)2O3 thin films prepared by pulsed laser deposition. Ceram Int, 42(11):12783-12788.

[42]Wright AF, Nelson JS, 1995. Bowing parameters for zinc-blende Al1−xGaxN and Ga1−xInxN. Appl Phys Lett, 66(22):3051.

[43]Yakuphanoglu F, Gunduz B, Al-Ghamdi AA, et al., 2015. Transparent ultraviolet photodiodes based conductive gallium-indium-oxide films/p-type silicon for solar panel tracking systems. Sens Actuat A Phys, 234:212-222.

[44]Yang F, Ma J, Luan C, et al., 2009. Structural and optical properties of Ga2(1−x)In2xO3 films prepared on α-Al2O3 (0001) by MOCVD. Appl Surf Sci, 255(8):4401-4404.

[45]Zhang FB, Saito K, Tanaka T, et al., 2014. Wide bandgap engineering of (GaIn)2O3 films. Sol State Commun, 186:28-31.

[46]Zhang FB, Sun JY, Li HO, et al., 2019. Mixed phase (GaIn)2O3 films with a single absorption edge grown by magnetron sputtering. J Electron Mater, 48(12):8061-8066.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE