CLC number: TP393
On-line Access: 2025-02-10
Received: 2023-10-31
Revision Accepted: 2024-01-05
Crosschecked: 2025-02-18
Cited: 0
Clicked: 1434
Chao JING, Jianwu XU. PPDO: a privacy-preservation-aware delay optimization task-offloading algorithm for collaborative edge computing[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(1): 27-41.
@article{title="PPDO: a privacy-preservation-aware delay optimization task-offloading algorithm for collaborative edge computing",
author="Chao JING, Jianwu XU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="1",
pages="27-41",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300741"
}
%0 Journal Article
%T PPDO: a privacy-preservation-aware delay optimization task-offloading algorithm for collaborative edge computing
%A Chao JING
%A Jianwu XU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 1
%P 27-41
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300741
TY - JOUR
T1 - PPDO: a privacy-preservation-aware delay optimization task-offloading algorithm for collaborative edge computing
A1 - Chao JING
A1 - Jianwu XU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 1
SP - 27
EP - 41
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300741
Abstract: Although collaborative edge computing (CEC) systems are beneficial in enhancing the performance of mobile edge computing (MEC), the issue of user privacy leakage becomes prominent during task offloading. To address this issue, we design a privacy-preservation-aware delay optimization task-offloading algorithm (PPDO) in a CEC system. By considering location and usage pattern privacy protection, we establish a privacy task model to interfere with the edge server and ensure user privacy. To address the extra delay arising from privacy protection, we subsequently leverage a markov decision processing (MDP) policy-iteration-based algorithm to minimize delays without compromising privacy. To simultaneously accelerate the MDP operation, we develop an extension that improves the PPDO by optimizing the action set. Finally, a comprehensive simulation was conducted using the edge user allocation (EUA) dataset. The results demonstrated that PPDO achieves an optimal trade-off between privacy protection and delay with a minimum delay compared with existing algorithms. Moreover, we examined the advantages and disadvantages of improving PPDO.
[1]Abbas N, Zhang Y, Taherkordi A, et al., 2018. Mobile edge computing: a survey. IEEE Int Things J, 5(1):450-465.
[2]Bai Y, Chen LX, Song LQ, et al., 2020. Risk-aware edge computation offloading using Bayesian Stackelberg game. IEEE Trans Netw Serv Manag, 17(2):1000-1012.
[3]Cao T, Qian ZZ, Wu K, et al., 2021. Service placement and bandwidth allocation for MEC-enabled mobile cloud gaming. Proc 22nd Int Symp on a World of Wireless, Mobile and Multimedia Networks, p.179-188.
[4]Chen SG, Zheng YM, Lu WF, et al., 2020. Energy-optimal dynamic computation offloading for Industrial IoT in fog computing. IEEE Trans Green Commun Netw, 4(2):566-576.
[5]Chu WB, Jia XM, Yu ZW, et al., 2023. Joint service caching, resource allocation and task offloading for MEC-based networks: a multi-layer optimization approach. IEEE Trans Mob Comput, 23(4):2958-2975.
[6]Dong LB, Gao HH, Wu WL, et al., 2023. Dependence-aware edge intelligent function offloading for 6G-based IoV. IEEE Trans Intell Transp Syst, 24(2):2265-2274.
[7]Gao HH, Wang XJ, Wei W, et al., 2023a. Com-DDPG: task offloading based on multiagent reinforcement learning for information-communication-enhanced mobile edge computing in the Internet of Vehicles. IEEE Trans Veh Technol, 73(1):348-361.
[8]Gao HH, Huang WQ, Liu T, et al., 2023b. PPO2: location privacy-oriented task offloading to edge computing using reinforcement learning for intelligent autonomous transport systems. IEEE Trans Intell Transp Syst, 24(7):7599-7612.
[9]He T, Ciftcioglu EN, Wang SQ, et al., 2017. Location privacy in mobile edge clouds. Proc IEEE 37th Int Conf on Distributed Computing Systems, p.2264-2269.
[10]He XF, Liu J, Jin RC, et al., 2017. Privacy-aware offloading in mobile-edge computing. IEEE Global Communications Conf, p.1-6.
[11]He XF, Jin RC, Dai HY, 2020. Peace: privacy-preserving and cost-efficient task offloading for mobile-edge computing. IEEE Trans Wirel Commun, 19(3):1814-1824.
[12]Hua W, Zhou ZY, Huang LY, 2023. Location privacy-aware offloading for MEC-enabled IoT: optimality and heuristics. IEEE Int Things J, 10(21):19270-19281.
[13]Ksentini A, Taleb T, Chen M, 2014. A Markov decision process-based service migration procedure for follow me cloud. IEEE Int Conf on Communications, p.1350-1354.
[14]Lai P, He Q, Abdelrazek M, et al., 2018. Optimal edge user allocation in edge computing with variable sized vector bin packing. Proc 16th Int Conf on Service-Oriented Computing, p.230-245.
[15]Lee S, Lee S, Lee SS, 2021. Deadline-aware task scheduling for IoT applications in collaborative edge computing. IEEE Wirel Commun Lett, 10(10):2175-2179.
[16]Lin P, Song QY, Wang D, et al., 2021. Resource management for pervasive-edge-computing-assisted wireless VR streaming in Industrial Internet of Things. IEEE Trans Ind Inform, 17(11):7607-7617.
[17]Mach P, Becvar Z, 2017. Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tut, 19(3):1628-1656.
[18]Mao S, Liu L, Zhang N, et al., 2022. Reconfigurable intelligent surface-assisted secure mobile edge computing networks. IEEE Trans Veh Technol, 71(6):6647-6660.
[19]Mao YY, Zhang J, Song SH, et al., 2017. Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems. IEEE Trans Wirel Commun, 16(9):5994-6009.
[20]Min MH, Wan XY, Xiao L, et al., 2019. Learning-based privacy-aware offloading for healthcare IoT with energy harvesting. IEEE Int Things J, 6(3):4307-4316.
[21]Ouyang T, Li R, Chen X, et al., 2019. Adaptive user-managed service placement for mobile edge computing: an online learning approach. IEEE Conf on Computer Communications, p.1468-1476.
[22]Qian LP, Wu WC, Lu WD, et al., 2021. Secrecy-based energy-efficient mobile edge computing via cooperative non-orthogonal multiple access transmission. IEEE Trans Commun, 69(7):4659-4677.
[23]Qin XD, Li B, Ying L, 2021. Distributed threshold-based offloading for large-scale mobile cloud computing. IEEE Conf on Computer Communications, p.1-10.
[24]Ren JK, Yu GD, He YH, et al., 2019. Collaborative cloud and edge computing for latency minimization. IEEE Trans Veh Technol, 68(5):5031-5044.
[25]Sahni Y, Cao JN, Yang L, 2019. Data-aware task allocation for achieving low latency in collaborative edge computing. IEEE Int Things J, 6(2):3512-3524.
[26]Taleb T, Dutta S, Ksentini A, et al., 2017. Mobile edge computing potential in making cities smarter. IEEE Commun Mag, 55(3):38-43.
[27]Wang F, Xu J, Wang X, et al., 2018. Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans Wirel Commun, 17(3):1784-1797.
[28]Wang JD, Zhao L, Liu JJ, et al., 2021. Smart resource allocation for mobile edge computing: a deep reinforcement learning approach. IEEE Trans Emerg Top Comput, 9(3):1529-1541.
[29]Wang TS, Li Y, Wu Y, 2021. Energy-efficient UAV assisted secure relay transmission via cooperative computation offloading. IEEE Trans Green Commun Netw, 5(4):1669-1683.
[30]Wang WX, Ge SX, Zhou XB, 2020. Location-privacy-aware service migration in mobile edge computing. IEEE Wireless Communications and Networking Conf, p.1-6.
[31]Wang ZB, Pang XY, Chen YH, et al., 2019. Privacy-preserving crowd-sourced statistical data publishing with an untrusted server. IEEE Trans Mob Comput, 18(6):1356-1367.
[32]Wang ZB, Sun YN, Liu DF, et al., 2023. Location privacy-aware task offloading in mobile edge computing. IEEE Trans Mob Comput, 23(3):2269-2283.
[33]Yang XM, Luo H, Sun Y, et al., 2020. Energy-efficient collaborative offloading for multiplayer games with cache-aided MEC. IEEE Int Conf on Communications, p.1-7.
[34]Yousaf K, Mehmood Z, Saba T, et al., 2018. A novel technique for speech recognition and visualization based mobile application to support two-way communication between deaf-mute and normal peoples. Wirel Commun Mob Comput, 2018:1013234.
[35]Zhao P, Jiang HB, Lui JCS, et al., 2018. P3-LOC: a privacy-preserving paradigm-driven framework for indoor localization. IEEE/ACM Trans Netw, 26(6):2856-2869.
[36]Zhao P, Tao JW, Lui K, et al., 2023. Deep reinforcement learning-based joint optimization of delay and privacy in multiple-user MEC systems. IEEE Trans Cloud Comput, 11(2):1487-1499.
Open peer comments: Debate/Discuss/Question/Opinion
<1>