Full Text:   <608>

CLC number: TP301

On-line Access: 2025-02-10

Received: 2024-03-12

Revision Accepted: 2024-04-01

Crosschecked: 2025-02-18

Cited: 0

Clicked: 1014

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kaiqing ZHOU

https://orcid.org/0000-0001-5779-7135

Yinhong XIANG

https://orcid.org/0009-0008-7629-868X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.1 P.93-108

http://doi.org/10.1631/FITEE.2400184


Parallel fault diagnosis using hierarchical fuzzy Petri net by reversible and dynamic decomposition mechanism


Author(s):  Yinhong XIANG, Kaiqing ZHOU, Arezoo SARKHEYLI-HGELE, Yusliza YUSOFF, Diwen KANG, Azlan Mohd ZAIN

Affiliation(s):  School of Communication and Electronics Engineering, Jishou University, Jishou416000, China; more

Corresponding email(s):   yhxiang@stu.jsu.edu.cn, kqzhou@jsu.edu.cn, arezoo.sarkheyli-haegele@mau.se, yusliza@utm.my, kangdiwen@jsu.edu.cn, alzanmz@utm.my

Key Words:  Fuzzy Petri net (FPN), State explosion, Decomposition, Parallel, Bidirectional reasoning


Yinhong XIANG, Kaiqing ZHOU, Arezoo SARKHEYLI-HGELE, Yusliza YUSOFF, Diwen KANG, Azlan Mohd ZAIN. Parallel fault diagnosis using hierarchical fuzzy Petri net by reversible and dynamic decomposition mechanism[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(1): 93-108.

@article{title="Parallel fault diagnosis using hierarchical fuzzy Petri net by reversible and dynamic decomposition mechanism",
author="Yinhong XIANG, Kaiqing ZHOU, Arezoo SARKHEYLI-HGELE, Yusliza YUSOFF, Diwen KANG, Azlan Mohd ZAIN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="1",
pages="93-108",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400184"
}

%0 Journal Article
%T Parallel fault diagnosis using hierarchical fuzzy Petri net by reversible and dynamic decomposition mechanism
%A Yinhong XIANG
%A Kaiqing ZHOU
%A Arezoo SARKHEYLI-HGELE
%A Yusliza YUSOFF
%A Diwen KANG
%A Azlan Mohd ZAIN
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 1
%P 93-108
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400184

TY - JOUR
T1 - Parallel fault diagnosis using hierarchical fuzzy Petri net by reversible and dynamic decomposition mechanism
A1 - Yinhong XIANG
A1 - Kaiqing ZHOU
A1 - Arezoo SARKHEYLI-HGELE
A1 - Yusliza YUSOFF
A1 - Diwen KANG
A1 - Azlan Mohd ZAIN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 1
SP - 93
EP - 108
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400184


Abstract: 
The state space explosion, a challenge analogous to that encountered in a Petri net (PN), has constrained the extensive study of fuzzy Petri nets (FPNs). Current reasoning algorithms employing FPNs, which operate through forward, backward, and bidirectional mechanisms, are examined. These algorithms streamline the inference process by eliminating irrelevant components of the FPN. However, as the scale of the FPN grows, the complexity of these algorithms escalates sharply, posing a significant challenge for practical applications. To address the state explosion issue, this work introduces a parallel bidirectional reasoning algorithm for an FPN that utilizes reverse and decomposition strategies to optimize the implementation process. The algorithm involves hierarchically dividing a large-scale FPN into two sub-FPNs, followed by a converse operation to generate the reversal sub-FPN for the right-sub-FPN. The detailed mapping between the original and reversed FPNs is thoroughly discussed. parallel reasoning operations are then conducted on the left-sub-FPN and the resulting reversal right-sub-FPN, with the final result derived by computing the Euclidean distance between the outcomes from the output places of the two sub-FPNs. A case study is presented to illustrate the implementation process, demonstrating the algorithm’s significant enhancement of inference efficiency and substantial reduction in execution time.

基于可逆和动态分解机制的层次化FPN并行故障诊断

向寅鸿1,周恺卿1,Arezoo SARKHEYLI-H?GELE2,Yusliza YUSOFF3
康棣文1,Azlan Mohd ZAIN3
1吉首大学通信与电子工程学院,中国吉首市,416000
2马尔默大学计算机科学与媒体技术系物联网与人联网研究中心,瑞典马尔默,20506
3马来西亚理工大学信息处理技术学院,马来西亚士古来,81310
摘要:与Petri网类似,模糊Petri网(fuzzy Petri net, FPN)的研究同样受到状态空间爆炸问题的限制。目前,基于FPN的推理算法主要依赖于正向、反向和双向等机制。这些算法通过消除FPN中不相关的部分来简化推理过程。然而,随着规模的扩大,基于FPN的相关应用算法的复杂度迅速增加,这给基于FPN的推理算法的实际应用带来重大挑战。为解决状态爆炸问题,本文提出一种基于可逆和动态分解机制的FPN双向推理算法,以优化推理过程。该算法将层次化后的FPN分解为左右两个子网;然后,深入分析FPN原网与其逆网元素之间的对应关系,提出FPN逆网生成算法,用于生成右子网的逆网;最后,在左子网与右子网的逆网上同时执行推理算法,通过计算两子网输出位置之间的欧式距离得到最终结果。案例表明,本文提出的推理算法显著提高了推理效率,大幅缩短了执行时间。

关键词:模糊Petri网(FPN);状态爆炸;分解;平行;双向推理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bai KY, Jia D, Meng WY, et al., 2023. Q-rung orthopair fuzzy Petri nets for knowledge representation and reasoning. IEEE Access, 11:93560-93573.

[2]Chen RH, Yang B, Li S, et al., 2020. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem. Comput Ind Eng, 149:106778.

[3]Chen SM, 2000. Fuzzy backward reasoning using fuzzy Petri nets. IEEE Trans Syst Man Cybern Part B (Cybern), 30(6):846-856.

[4]Chen SM, 2002. Weighted fuzzy reasoning using weighted fuzzy Petri nets. IEEE Trans Knowl Data Eng, 14(2):386-397.

[5]Chen XH, Zhang BK, Gao D, 2021. Bearing fault diagnosis base on multi-scale CNN and LSTM model. J Intell Manuf, 32(4):971-987.

[6]Gao MM, Zhou MC, Huang XG, et al., 2003. Fuzzy reasoning Petri nets. IEEE Trans Syst Man Cybern Part A Syst Hum, 33(3):314-324.

[7]Grobelna I, Karatkevich A, 2021. Challenges in application of Petri nets in manufacturing systems. Electronics, 10(18):2305.

[8]Hu HS, Li ZW, Al-Ahmari A, 2011. Reversed fuzzy Petri nets and their application for fault diagnosis. Comput Ind Eng, 60(4):505-510.

[9]Jiang W, Zhou KQ, Sarkheyli-Hägele A, et al., 2022. Modeling, reasoning, and application of fuzzy Petri net model: a survey. Artif Intell Rev, 55(8):6567-6605.

[10]Lakos C, Petrucci L, 2011. Modular state spaces for prioritised Petri nets. In: Calinescu R, Jackson E (Eds.), Foundations of Computer Software. Springer, Berlin, Heidelberg, p.136-156.

[11]Lei YG, Yang B, Jiang XW, et al., 2020. Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech Syst Signal Process, 138:106587.

[12]Liu HC, Lin QL, Ren ML, 2013. Fault diagnosis and cause analysis using fuzzy evidential reasoning approach and dynamic adaptive fuzzy Petri nets. Comput Ind Eng, 66(4):899-908.

[13]Liu HC, You JX, Li ZW, et al., 2017. Fuzzy Petri nets for knowledge representation and reasoning: a literature review. Eng Appl Artif Intell, 60:45-56.

[14]Liu HC, Luan X, Zhou MC, et al., 2022. A new linguistic Petri net for complex knowledge representation and reasoning. IEEE Trans Knowl Data Eng, 34(3):1011-1020.

[15]Mou X, Mao LX, Liu HC, et al., 2022. Spherical linguistic Petri nets for knowledge representation and reasoning under large group environment. IEEE Trans Artif Intell, 3(3):402-413.

[16]Nishi T, Matsumoto I, 2015. Petri net decomposition approach to deadlock-free and non-cyclic scheduling of dual-armed cluster tools. IEEE Trans Autom Sci Eng, 12(1):281-294.

[17]Rudin C, 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell, 1(5):206-215.

[18]Russell SJ, Norvig P, 2009. Artificial Intelligence: a Modern Approach (3rd Ed). Prentice Hall Press, Upper Saddle River, USA.

[19]Salum L, 2015. Avoiding state explosion in a class of Petri nets. Expert Syst Appl, 42(1):519-526.

[20]Seatzu C, 2019. Modeling, analysis, and control of automated manufacturing systems using Petri nets. Proc 24th IEEE Int Conf on Emerging Technologies and Factory Automation, p.27-30.

[21]Shen VRL, Chung YF, Chen SM, et al., 2013. A novel reduction approach for Petri net systems based on matching theory. Expert Syst Appl, 40(11):4562-4576.

[22]Shi H, Liu HC, Wang JH, et al., 2022. New linguistic Z-number Petri nets for knowledge acquisition and representation under large group environment. Int J Fuzzy Syst, 24(8):3483-3500.

[23]Shi H, Yu YX, Liu R, et al., 2024. Probabilistic linguistic Petri nets for knowledge representation and acquisition with dynamic consensus reaching process. IEEE Trans Fuzzy Syst, 32(4):2198-2210.

[24]Valmari A, 1998. The state explosion problem. In: Reisig W, Rozenberg G (Eds.), Lectures on Petri Nets I: Basic Models. Springer, Berlin, Heidelberg, p.429-528.

[25]Wang XL, Lu FM, Zhou MC, et al., 2022. A synergy-effect-incorporated fuzzy Petri net modeling paradigm with application in risk assessment. Expert Syst Appl, 199:117037.

[26]Xiang YH, Zhou KQ, Yang SY, et al., 2023. Hierarchical algorithm of fuzzy Petri net by reverse search. J Comput Appl, 43(12):3676-3682 (in Chinese).

[27]Yang X, 2023. Performance analysis of Petri net based on moment generating function. J Intell Fuzzy Syst, 45(1):1131-1139.

[28]Ye SQ, Zhou KQ, Zain AM, et al., 2023. A modified harmony search algorithm and its applications in weighted fuzzy production rule extraction. Front Inform Technol Electron Eng, 24(11):1574-1590.

[29]Yeung DS, Ysang ECC, 1998. A multilevel weighted fuzzy reasoning algorithm for expert systems. IEEE Trans Syst Man Cybern Part A Syst Hum, 28(2):149-158.

[30]Yu YX, Gong HP, Liu HC, et al., 2023. Knowledge representation and reasoning using fuzzy Petri nets: a literature review and bibliometric analysis. Artif Intell Rev, 56(7):‍6241-6265.

[31]Yuan J, Shi HB, Liu C, et al., 2008. Improved basic inference models of fuzzy Petri nets. Proc 7th World Congress on Intelligent Control and Automation, p.1488-1493.

[32]Zaitsev DA, 2004. Decomposition of Petri nets. Cybern Syst Anal, 40(5):739-746.

[33]Zeng RF, Jiang YX, Lin C, et al., 2012. Dependability analysis of control center networks in smart grid using stochastic petri nets. IEEE Trans Parall Distrib Syst, 23(9):1721-1730.

[34]Zhou KQ, Zain AM, 2016. Fuzzy Petri nets and industrial applications: a review. Artif Intell Rev, 45(4):405-446.

[35]Zhou KQ, Zain AM, Mo LP, 2015a. A decomposition algorithm of fuzzy Petri net using an index function and incidence matrix. Expert Syst Appl, 42(8):3980-3990.

[36]Zhou KQ, Zain AM, Mo LP, 2015b. Dynamic properties of fuzzy Petri net model and related analysis. J Cent South Univ, 22(12):4717-4723.

[37]Zhou KQ, Gui WH, Mo LP, et al., 2018. A bidirectional diagnosis algorithm of fuzzy Petri net using inner–reasoning–path. Symmetry, 10(6):192.

[38]Zhou KQ, Mo LP, Jin J, et al., 2019. An equivalent generating algorithm to model fuzzy Petri net for knowledge-based system. J Intell Manuf, 30(4):1831-1842.

[39]Ziani R, Felkaoui A, Zegadi R, 2017. Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher’s criterion. J Intell Manuf, 28(2):405-417.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE