Full Text:   <676>

CLC number: TN953

On-line Access: 2025-07-02

Received: 2024-05-28

Revision Accepted: 2025-07-02

Crosschecked: 2024-07-07

Cited: 0

Clicked: 1084

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yunfei GUO

https://orcid.org/0000-0001-7887-4312

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.6 P.978-990

http://doi.org/10.1631/FITEE.2400449


An efficient multi-Bernoulli filter for tracking multiple maritime dim targets


Author(s):  Liwei SHI, Yunfei GUO, Wenxiong CUI, Yanbo XUE, Yun CHEN

Affiliation(s):  School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

Corresponding email(s):   gyf@hdu.edu.cn

Key Words:  Maritime dim targets, Track-before-detect, Multi-Bernoulli


Liwei SHI, Yunfei GUO, Wenxiong CUI, Yanbo XUE, Yun CHEN. An efficient multi-Bernoulli filter for tracking multiple maritime dim targets[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(6): 978-990.

@article{title="An efficient multi-Bernoulli filter for tracking multiple maritime dim targets",
author="Liwei SHI, Yunfei GUO, Wenxiong CUI, Yanbo XUE, Yun CHEN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="6",
pages="978-990",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400449"
}

%0 Journal Article
%T An efficient multi-Bernoulli filter for tracking multiple maritime dim targets
%A Liwei SHI
%A Yunfei GUO
%A Wenxiong CUI
%A Yanbo XUE
%A Yun CHEN
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 6
%P 978-990
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400449

TY - JOUR
T1 - An efficient multi-Bernoulli filter for tracking multiple maritime dim targets
A1 - Liwei SHI
A1 - Yunfei GUO
A1 - Wenxiong CUI
A1 - Yanbo XUE
A1 - Yun CHEN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 6
SP - 978
EP - 990
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400449


Abstract: 
For the problem of tracking maritime dim targets, the sequential Monte–Carlo multi-Bernoulli track-before-detect (SMC-MB-TBD) method is popular. However, this method may face low tracking accuracy and tracking loss due to particle impoverishment and velocity uncertainty. In this study, a novel filter called position scaling and velocity correction multi-Bernoulli (PSVC-MB) is proposed to deal with this problem. First, particle position scaling is used to replace resampling in the SMC-MB-TBD method to deal with the lack of particle diversity. Second, when the target is stably tracked, the target velocity is extracted from the multi-frame information and used for re-estimation. Pseudo point measurements are calculated from the weighted average of all locations near the particle position, and the particle velocity will be continuously corrected with the pseudo point measurements. Simulation results verify the effectiveness of the proposed method at different low signal-to-clutter ratios (SCRs).

一种用于跟踪多海面弱目标的高效多伯努利滤波器

石力玮,郭云飞,崔文兄,薛研博,陈云
杭州电子科技大学自动化学院,中国杭州市,310018
摘要:序贯蒙特卡罗多伯努利检测前跟踪(SMC-MB-TBD)方法广泛应用于海上弱目标的跟踪问题。由于粒子贫化和速度不确定性,该方法存在跟踪精度低和跟踪损失的问题。为解决这一问题,本文提出一种新的位置缩放和速度校正多伯努利滤波器(PSVC-MB)。首先,采用粒子位置缩放代替SMC-MB-TBD方法中的重采样,解决了粒子多样性不足的问题。其次,当目标稳定跟踪时,从多帧信息中提取目标速度并将其用于重新估计。由粒子位置附近所有位置的加权平均计算得到伪点测量值,并通过伪点测量值对粒子速度进行连续修正。仿真结果验证了该方法在不同低信杂比条件下的有效性。

关键词:海面弱目标;检测前跟踪;多伯努利

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abraham DA, Lyons AP, 2002. Novel physical interpretations of K-distributed reverberation. IEEE J Ocean Eng, 27(4):800-813.

[2]Armstrong BC, Griffiths HD, 1991. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter. IEE Proc F Radar Signal Process, 138(2):139-152.

[3]Chesser JA, Nguyen HV, Ranasinghe DC, 2022. The Megopolis resampler: memory coalesced resampling on GPUs. Dig Signal Process, 120: 103261.

[4]Davey SJ, Rutten MG, 2007. A comparison of three algorithms for tracking dim targets. Information, Decision and Control, p.342-347.

[5]Davey SJ, Gaetjens HX, 2018. Track-Before-Detect Using Expectation Maximisation—The Histogram Probabilistic Multi-Hypothesis Tracker: Theory and Applications. Springer, Singapore.

[6]Ester M, Kriegel HP, Sander J, et al., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc 2nd Int Conf on Knowledge Discovery and Data Mining, p.226-231.

[7]Guo YF, Teng K, Shi LW, 2023. SA-HPMHT for maritime dim targets tracking with sensor location uncertainty. IEEE Sens J, 23(5):5134-5145.

[8]Kim DY, Ristic B, Wang XZ, et al., 2019. A comparative study of track-before-detect algorithms in radar sea clutter. Int Radar Conf, p.1-6.

[9]Kim DY, Ristic B, Guan R, et al., 2021. A Bernoulli track-before-detect filter for interacting targets in maritime radar. IEEE Trans Aerosp Electron Syst, 57(3):1981-1991.

[10]Li WJ, Yi W, Kong LJ, et al., 2022. An efficient track-before-detect for multi-PRF radars with range and Doppler ambiguities. IEEE Trans Aerosp Electron Syst, 58(5):4083-4100.

[11]Liang MC, Kropfreiter T, Meyer F, 2023. A BP method for track-before-detect. IEEE Signal Process Lett, 30:1137-1141.

[12]Moyer LR, Spak J, Lamanna P, 2011. A multi-dimensional Hough transform-based track-before-detect technique for detecting weak targets in strong clutter backgrounds. IEEE Trans Aerosp Electron Syst, 47(4):3062-3068.

[13]Papi F, Vo BN, Vo BT, et al., 2015. Generalized labeled multi-Bernoulli approximation of multi-object densities. IEEE Trans Signal Process, 63(20):5487-5497.

[14]Posner FL, 2002. Spiky sea clutter at high range resolutions and very low grazing angles. IEEE Trans Aerosp Electron Syst, 38(1):58-73.

[15]Reuter S, Vo BT, Vo BN, et al., 2014. The labeled multi-Bernoulli filter. IEEE Trans Signal Process, 62(12):3246-3260.

[16]Ristic B, Arulampalam S, Gordon N, 2004. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, London, UK.

[17]Ristic B, Vo BT, Vo BN, et al., 2013. A tutorial on Bernoulli filters: theory, implementation and applications. IEEE Trans Signal Process, 61(13):3406-3430.

[18]Ristic B, Rosenberg L, Kim DY, et al., 2020. Bernoulli track-before-detect filter for maritime radar. IET Radar Sonar Navig, 14(3):356-363.

[19]Ristic B, Kim DY, Rosenberg L, et al., 2022. Exploiting Doppler in Bernoulli track-before-detect for a scanning maritime radar. IEEE Trans Aerosp Electron Syst, 58(1):720-728.

[20]Tian MC, Chen ZM, Wang HF, et al., 2022. An intelligent particle filter for infrared dim small target detection and tracking. IEEE Trans Aerosp Electron Syst, 58(6):5318-5333.

[21]Vo BN, Vo BT, Pham NT, et al., 2010. Joint detection and estimation of multiple objects from image observations. IEEE Trans Signal Process, 58(10):5129-5141.

[22]Vu HX, Davey SJ, Arulampalam S, et al., 2013. H-PMHT with a Poisson measurement model. Int Conf on Radar, p.446-451.

[23]Ward K, Tough R, Watts S, 2013. Sea clutter: scattering, the K distribution and radar performance. Waves Random Compl Med, 17(2):233-234.

[24]Xu C, He ZS, Liu HC, et al., 2021. Bayesian track-before-detect algorithm for nonstationary sea clutter. J Syst Eng Electron, 32(6):1338-1344.

[25]Yi W, Morelande MR, Kong LJ, et al., 2013. An efficient multi-frame track-before-detect algorithm for multi-target tracking. IEEE J Sel Top Signal Process, 7(3):421-434.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE