CLC number:
On-line Access: 2025-01-24
Received: 2024-06-04
Revision Accepted: 2025-01-24
Crosschecked: 2024-10-10
Cited: 0
Clicked: 201
Zelong CUI, Jun LIU, Gang YANG. XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1750-1758.
@article{title="XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks",
author="Zelong CUI, Jun LIU, Gang YANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1750-1758",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400477"
}
%0 Journal Article
%T XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks
%A Zelong CUI
%A Jun LIU
%A Gang YANG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1750-1758
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400477
TY - JOUR
T1 - XL-RIS empowered near-field physical layer security against jamming and eavesdropping attacks
A1 - Zelong CUI
A1 - Jun LIU
A1 - Gang YANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1750
EP - 1758
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400477
Abstract: Wireless communication is vulnerable to malicious jamming and eavesdropping attacks due to the broadcast nature of wireless channels. An extremely-large-scale reconfigurable intelligent surface (XL-RIS) demonstrates its abilities to enhance the physical layer security (PLS) and compensate for the severe path loss. We investigate an XL-RIS empowered near-field PLS communication system against jamming and eavesdropping attacks with the help of artificial noise (AN). To maximize the secrecy capacity, we propose an alternating optimization (AO) based algorithm to jointly optimize the beamformers at the base station (BS) and the reflection coefficient matrix at the XL-RIS, subject to the BS’s maximum transmit power and the XL-RIS’s unit-modulus constraints. For the beamforming and AN design at the BS, auxiliary variables are introduced to reformulate the subproblem into a more tractable problem, which is solved by the proposed successive convex approximation (SCA) based algorithm. For the reflection coefficient matrix design at the XL-RIS, a manifold optimization (MO) based algorithm is proposed to address the challenge of large-scale variables and unit-modulus constraints. Numerical results show that XL-RIS can ensure secure communication even if the eavesdropper is located at the same direction as the legitimate user and closer to the XL-RIS.
[1]Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, Cambridge, UK.
[2]Boyd S, Vandenberghe L, Faybusovich L, 2006. Convex optimization. IEEE Trans Autom Contr, 51(11):1859.
[3]Cheng Q, Jin S, Cui TJ, 2023. Reconfigurable intelligent surfaces for wireless communications. Front Inform Technol Electron Eng, 24(12):1665-1668.
[4]di Renzo M, Zappone A, Debbah M, et al., 2020. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun, 38(11):2450-2525.
[5]Guo HY, Liang YC, Chen J, et al., 2020. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans Wirel Commun, 19(5):3064-3076.
[6]Liang LP, Cheng WC, Zhang W, et al., 2018. Mode hopping for anti-jamming in radio vortex wireless communications. IEEE Trans Veh Technol, 67(8):7018-7032.
[7]Liu J, Yang G, Liang YC, et al., 2024a. Max-min fairness in RIS-assisted anti-jamming communications: optimization versus deep reinforcement learning approaches. IEEE Trans Commun, 72(7):4476-4492.
[8]Liu J, Yang G, Liu YW, et al., 2024b. RIS empowered near-field covert communications. IEEE Trans Wirel Commun, 23(10):15477-15492.
[9]Liu YW, Wang ZL, Xu JQ, et al., 2023. Near-field communications: a tutorial review. IEEE Open J Commun Soc, 4:1999-2049.
[10]Liu ZH, Liu HB, Xu WY, et al., 2014. An error-minimizing framework for localizing jammers in wireless networks. IEEE Trans Parall Distrib Syst, 25(2):508-517.
[11]Ma YD, Liu K, Liu YM, et al., 2024. Secure transmission via hybrid active-passive RIS against eavesdropping and jamming. IEEE Wirel Commun Lett, 13(7):1978-1982.
[12]Moon J, Lee H, Song C, et al., 2018. Proactive eavesdropping with full-duplex relay and cooperative jamming. IEEE Trans Wirel Commun, 17(10):6707-6719.
[13]Mukherjee A, Swindlehurst AL, 2012. Detecting passive eavesdroppers in the MIMO wiretap channel. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.2809-2812.
[14]Nguyen VL, Lin PC, Cheng BC, et al., 2021. Security and privacy for 6G: a survey on prospective technologies and challenges. IEEE Commun Surv Tutor, 23(4):2384-2428.
[15]Pan CH, Ren H, Wang KZ, et al., 2020. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 38(8):1719-1734.
[16]Sun YF, An K, Luo JS, et al., 2022a. Outage constrained robust beamforming optimization for multiuser IRS-assisted anti-jamming communications with incomplete information. IEEE Int Things J, 9(15):13298-13314.
[17]Sun YF, An K, Zhu YG, et al., 2022b. RIS-assisted robust hybrid beamforming against simultaneous jamming and eavesdropping attacks. IEEE Trans Wirel Commun, 21(11):9212-9231.
[18]Sun YF, An K, Li C, et al., 2023. Joint transmissive and reflective RIS-aided secure MIMO systems design under spatially-correlated angular uncertainty and coupled PSEs. IEEE Trans Inform Forens Secur, 18:3606-3621.
[19]Wei L, Huang CW, Alexandropoulos GC, et al., 2021. Channel estimation for RIS-empowered multi-user MISO wireless communications. IEEE Trans Commun, 69(6):4144-4157.
[20]Yan SH, Yang N, Land I, et al., 2018. Three artificial-noise-aided secure transmission schemes in wiretap channels. IEEE Trans Veh Technol, 67(4):3669-3673.
[21]Zhang Z, Liu YW, Wang ZL, et al., 2024. Physical layer security in near-field communications. IEEE Trans Veh Technol, 73(7):10761-10766.
[22]Zhao YJ, 2023. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions. Front Inform Technol Electron Eng, 24(12):1669-1688.
[23]Zhou G, Pan CH, Ren H, et al., 2020. Robust beamforming design for intelligent reflecting surface aided MISO communication systems. IEEE Wirel Commun Lett, 9(10):1658-1662.
[24]Zhou G, Pan CH, Ren H, et al., 2021. Secure wireless communication in RIS-aided MISO system with hardware impairments. IEEE Wirel Commun Lett, 10(6):1309-1313.
Open peer comments: Debate/Discuss/Question/Opinion
<1>