Full Text:   <363>

Summary:  <19>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-01-24

Received: 2024-03-07

Revision Accepted: 2025-01-24

Crosschecked: 2024-08-08

Cited: 0

Clicked: 636

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jiayi Zhang

https://orcid.org/0000-0003-2434-4329

Zhe WANG

https://orcid.org/0000-0001-5745-7640

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.12 P.1723-1731

http://doi.org/10.1631/FITEE.2400167


Effective degree of freedom for near-field plane-based XL-MIMO with tri-polarization


Author(s):  Zhe WANG, Jiayi ZHANG, Wenhui YI, Huahua XIAO, Dusit NIYATO, Bo AI

Affiliation(s):  School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; more

Corresponding email(s):   zhewang_77@bjtu.edu.cn, jiayizhang@bjtu.edu.cn

Key Words: 


Zhe WANG, Jiayi ZHANG, Wenhui YI, Huahua XIAO, Dusit NIYATO, Bo AI. Effective degree of freedom for near-field plane-based XL-MIMO with tri-polarization[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1723-1731.

@article{title="Effective degree of freedom for near-field plane-based XL-MIMO with tri-polarization",
author="Zhe WANG, Jiayi ZHANG, Wenhui YI, Huahua XIAO, Dusit NIYATO, Bo AI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1723-1731",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400167"
}

%0 Journal Article
%T Effective degree of freedom for near-field plane-based XL-MIMO with tri-polarization
%A Zhe WANG
%A Jiayi ZHANG
%A Wenhui YI
%A Huahua XIAO
%A Dusit NIYATO
%A Bo AI
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1723-1731
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400167

TY - JOUR
T1 - Effective degree of freedom for near-field plane-based XL-MIMO with tri-polarization
A1 - Zhe WANG
A1 - Jiayi ZHANG
A1 - Wenhui YI
A1 - Huahua XIAO
A1 - Dusit NIYATO
A1 - Bo AI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1723
EP - 1731
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400167


Abstract: 
In this paper we study the effective degree of freedom (EDoF) for extremely large-scale multiple-input multiple-output (XL-MIMO) systems. We consider two XL-MIMO hardware designs, uniform planar array (UPA) based and continuous aperture (CAP) based XL-MIMO, as well as two representative near-field channel models: scalar Green function based and dyadic Green function with triple polarization based models. First, for UPA-based XL-MIMO with a discrete array aperture, we evaluate the EDoF performance by applying discrete channel matrices generated by the scalar or dyadic Green channel model. Then, for CAP-based XL-MIMO, a tailored EDoF performance evaluation framework for a two-dimensional (2D) CAP plane based system is constructed by leveraging asymptotic analysis and extending the analysis approaches for a one-dimensional (1D) CAP line segment based system. This framework incorporates the triple-polarized auto-correlation kernel function, which can efficiently capture the impact of multiple polarization on the EDoF performance. Numerical results show that, with an increase in the number of antennas, the UPA-based XL-MIMO system can achieve an EDoF performance close to the EDoF performance for the CAP plane based XL-MIMO system. Moreover, the EDoF performance can be enhanced by the multiple polarization in channels and increased physical size of the transceiver.

基于三极化的近场平面XL-MIMO有效自由度分析

王者1,2,章嘉懿1,易文慧1,肖华华3,Dusit NIYATO2,艾渤1
1北京交通大学电子信息工程学院,中国北京市,100044
2南洋理工大学计算机与数据科学学院,新加坡,639798
3中兴通讯移动网络与移动多媒体技术国家重点实验室,中国深圳市,518057
摘要:本文研究超大规模多入多出(XL-MIMO)系统中的有效自由度(EDoF)问题。考虑了两种XL-MIMO硬件架构--基于均匀平面阵列(UPA)和连续孔径(CAP)的XL-MIMO系统,以及两种具有代表性的近场信道模型--基于标量格林函数的信道模型和考虑三极化的并矢格林函数信道模型。首先,对于基于UPA的XL-MIMO系统,通过离散信道矩阵分析其EDoF性能。然后,针对基于CAP的XL-MIMO系统,构建了一个适用于二维CAP平面的EDoF性能分析框架,该框架利用渐近分析方法并扩展了现有一维CAP线段系统的分析方法。研究结果表明,随着天线数量的增加,基于UPA的XL-MIMO系统的EDoF性能趋近于基于CAP平面的XL-MIMO系统。此外,信道中的多极化效应以及收发器物理尺寸的增加有助于提升EDoF性能。

关键词:超大规模多入多出(XL-MIMO);近场通信;有效自由度;极化效应

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arnoldus HF, 2001. Representation of the near-field, middle-field, and far-field electromagnetic Green’s functions in reciprocal space. J Opt Soc Am B, 18(4):547-555.

[2]Björnson E, Sanguinetti L, Wymeersch H, et al., 2019. Massive MIMO is a reality—what is next?: five promising research directions for antenna arrays. Dig Signal Process, 94:3-20.

[3]Björnson E, Chae CB, Heath RWJr, et al., 2024. Towards 6G MIMO: massive spatial multiplexing, dense arrays, and interplay between electromagnetics and processing.

[4]Chen SF, Zhang JY, Björnson E, et al., 2021. Structured massive access for scalable cell-free massive MIMO systems. IEEE J Sel Areas Commun, 39(4):1086-1100.

[5]Chen SF, Zhang JY, Björnson E, et al., 2023. Energy-efficient cell-free massive MIMO through sparse large-scale fading processing. IEEE Trans Wirel Commun, 22(12):9374-9389.

[6]Cui MY, Dai LL, 2022. Channel estimation for extremely large-scale MIMO: far-field or near-field? IEEE Trans Commun, 70(4):2663-2677.

[7]Cui MY, Wu ZD, Lu Y, et al., 2023. Near-field MIMO communications for 6G: fundamentals, challenges, potentials, and future directions. IEEE Commun Mag, 61(1):40-46.

[8]Du HY, Wang JC, Niyato D, et al., 2023. Semantic communications for wireless sensing: RIS-aided encoding and self-supervised decoding. IEEE J Sel Areas Commun, 41(8):2547-2562.

[9]Du HY, Zhang RC, Liu YQ, et al., 2024. Enhancing deep reinforcement learning: a tutorial on generative diffusion models in network optimization. IEEE Commun Surv Tut, 26(4):2611-2646.

[10]Gan X, Zhong CJ, Huang CW, et al., 2021. RIS-assisted multi-user MISO communications exploiting statistical CSI. IEEE Trans Commun, 69(10):6781-6792.

[11]Gong TR, Gavriilidis P, Ji R, et al., 2024. Holographic MIMO communications: theoretical foundations, enabling technologies, and future directions. IEEE Commun Surv Tut, 26(1):196-257.

[12]Huang CW, Yang ZH, Alexandropoulos GC, et al., 2021. Multi-hop RIS-empowered terahertz communications: a DRL-based hybrid beamforming design. IEEE J Sel Areas Commun, 39(6):1663-1677.

[13]Jiang YH, Gao FF, 2023. Electromagnetic channel model for near field MIMO systems in the half space. IEEE Commun Lett, 27(2):706-710.

[14]Lei H, Zhang JY, Xiao HH, et al., 2024a. Channel estimation for XL-MIMO systems with polar-domain multi-scale residual dense network. IEEE Trans Veh Technol, 73(1):1479-1484.

[15]Lei H, Zhang JY, Wang Z, et al., 2024b. Hybrid-field channel estimation for XL-MIMO systems with stochastic gradient pursuit algorithm. IEEE Trans Signal Process, 72:2998-3012.

[16]Letaief KB, Chen W, Shi YM, et al., 2019. The roadmap to 6G: AI empowered wireless networks. IEEE Commun Mag, 57(8):84-90.

[17]Liu YW, Ouyang CJ, Wang ZL, et al., 2024. Near-field communications: a comprehensive survey.

[18]Liu ZH, Zhang JY, Liu ZL, et al., 2024. Double-layer power control for mobile cell-free XL-MIMO with multi-agent reinforcement learning. IEEE Trans Wirel Commun, 23(5):4658-4674.

[19]Liu ZL, Zhang JY, Liu ZH, et al., 2024. Cell-free XL-MIMO meets multi-agent reinforcement learning: architectures, challenges, and future directions. IEEE Wirel Commun, 31(4):155-162.

[20]Lu HQ, Zeng Y, 2022. Communicating with extremely large-scale array/surface: unified modeling and performance analysis. IEEE Trans Wirel Commun, 21(6):4039-4053.

[21]Lu HQ, Zeng Y, You CS, et al., 2023. A tutorial on near-field XL-MIMO communications towards 6G.

[22]Marzetta TL, 2010. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 9(11):3590-3600.

[23]Ouyang CJ, Liu YW, Yang HW, 2022. Performance of downlink and uplink integrated sensing and communications (ISAC) systems. IEEE Wirel Commun Lett, 11(9):1850-1854.

[24]Ouyang CJ, Liu YW, Zhang XQ, et al., 2023. Near-field communications: a degree-of-freedom perspective.

[25]Shi EY, Zhang JY, Du HY, et al., 2024. RIS-aided cell-free massive MIMO systems for 6G: fundamentals, system design, and applications. Proc IEEE, 112(4):331-364.

[26]Sun G, He L, Sun ZM, et al., 2024. Joint task offloading and resource allocation in aerial-terrestrial UAV networks with edge and fog computing for post-disaster rescue. IEEE Trans Mob Comput, 23(9):8582-8600.

[27]Tang P, Zhang JH, Miao HY, et al., 2024. XL-MIMO channel measurement, characterization, and modeling for 6G: a survey. Front Inform Technol Electron Eng, early access.

[28]Tataria H, Shafi M, Molisch AF, et al., 2021. 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proc IEEE, 109(7):1166-1199.

[29]Wang Z, Zhang JY, Du HY, et al., 2024a. Extremely large-scale MIMO: fundamentals, challenges, solutions, and future directions. IEEE Wirel Commun, 31(3):117-124.

[30]Wang Z, Zhang JY, Du HY, et al., 2024b. A tutorial on extremely large-scale MIMO for 6G: fundamentals, signal processing, and applications. IEEE Commun Surv Tut, 26(3):1560-1605.

[31]Wei L, Huang CW, Alexandropoulos GC, et al., 2023. Tripolarized holographic MIMO surfaces for near-field communications: channel modeling and precoding design. IEEE Trans Wirel Commun, 22(12):8828-8842.

[32]Xie ZY, Liu YW, Xu JQ, et al., 2023. Performance analysis for near-field MIMO: discrete and continuous aperture antennas. IEEE Wirel Commun Lett, 12(12):2258-2262.

[33]Xu BK, Zhang JY, Li JX, et al., 2023. Jac-PCG based low-complexity precoding for extremely large-scale MIMO systems. IEEE Trans Veh Technol, 72(12):16811-16816.

[34]Xu BK, Zhang JY, Du HY, et al., 2024. Resource allocation for near-field communications: fundamentals, tools, and outlooks. IEEE Wirel Commun, 31(5):42-50.

[35]You CS, Zhang YP, Wu CY, et al., 2023. Near-field beam management for extremely large-scale array communications.

[36]You XH, Wang CX, Huang J, et al., 2021. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inform Sci, 64(1):110301.

[37]Yuan SSA, He Z, Chen XM, et al., 2022. Electromagnetic effective degree of freedom of an MIMO system in free space. IEEE Antenn Wirel Propag Lett, 21(3):446-450.

[38]Yuan SSA, Wu J, Xu HJ, et al., 2024. Breaking the degrees-of-freedom limit of holographic MIMO communications: a 3-D antenna array topology. IEEE Trans Veh Technol, 73(8):11276-11288.

[39]Zhang JY, Björnson E, Matthaiou M, et al., 2020. Prospective multiple antenna technologies for beyond 5G. IEEE J Sel Areas Commun, 38(8):1637-1660.

[40]Zhang JY, Zhang J, Björnson E, et al., 2021. Local partial zero-forcing combining for cell-free massive MIMO systems. IEEE Trans Commun, 69(12):8459-8473.

[41]Zhang ZJ, Dai LL, 2023. Pattern-division multiplexing for multi-user continuous-aperture MIMO. IEEE J Sel Areas Commun, 41(8):2350-2366.

[42]Zheng JK, Zhang JY, Cheng JL, et al., 2023. Asynchronous cell-free massive MIMO with rate-splitting. IEEE J Sel Areas Commun, 41(5):1366-1382.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE