CLC number: TP20
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 4
Clicked: 7267
XIAO Jie, ZHOU Ze-kui, ZHANG Guang-xin. Ant colony system algorithm for the optimization of beer fermentation control[J]. Journal of Zhejiang University Science A, 2004, 5(12): 1597-1603.
@article{title="Ant colony system algorithm for the optimization of beer fermentation control",
author="XIAO Jie, ZHOU Ze-kui, ZHANG Guang-xin",
journal="Journal of Zhejiang University Science A",
volume="5",
number="12",
pages="1597-1603",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.1597"
}
%0 Journal Article
%T Ant colony system algorithm for the optimization of beer fermentation control
%A XIAO Jie
%A ZHOU Ze-kui
%A ZHANG Guang-xin
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 12
%P 1597-1603
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.1597
TY - JOUR
T1 - Ant colony system algorithm for the optimization of beer fermentation control
A1 - XIAO Jie
A1 - ZHOU Ze-kui
A1 - ZHANG Guang-xin
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 12
SP - 1597
EP - 1603
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.1597
Abstract: beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
[1] Andres-Toro, B., Giron-Sierra, J.M., Lopez-Orozco, J.A., Fernandez-Conde, C., 1997a. Application of Genetic Algorithms and Simulations for the Optimization of Batch Fermentation Control. Proc. IEEE International Conference on System, Man, and Cybernetics, ‘Computational Cybernetics and Simulation’, p.392-397.
[2] Andres-Toro, B., Giron-Sierra, J.M., Lopez-Orozco, J.A., Fernandez-Conde, C., 1997b. Using Genetic Algorithms for Dynamic Optimization: An Industrial Fermentation Case. Proceedings of the 36th Conference on Decision & Control. San Diego, California, USA, p.828-829.
[3] Andres-Toro, B., Giron-Sierra, J.M., Lopez-Orozco, J.A., Fernandez-Conde, C., Peinado, J.M., Garcia-Ochoa, F., 1998. A kinetic model for beer production under industrial operational conditions. Mathematics and Computers in Simulation, 48:65-74.
[4] Carrillo-Ureta, G.E., Roberts, P.D., Becerra, V.M., 2001. Genetic Algorithms for Optimal Control of Beer Fermentation. Proceedings of the 2001 IEEE International Symposium on Intelligent Control, Mexico City, Mexico, p.391-396.
[5] Dorigo, M., Gambardella, L.M., 1997. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53-66.
[6] Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and CyberneticsPart B: Cybernetics, 26(1):29-41.
[7] Dorigo, M., Gambardella, L.M., Middendorf, M., Stutzle, T., 2002. Guest editorial special section on ant colony optimization. IEEE Transactions on Evolutionary Computation, 6(4):317-319.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
mohammad@ario<ariocompany@gmail.com>
2010-11-07 02:03:46
hi