CLC number: O346.1; TB303
On-line Access:
Received: 2006-03-16
Revision Accepted: 2006-05-25
Crosschecked: 0000-00-00
Cited: 7
Clicked: 5732
ALSHOAIBI Abdulnaser M., ARIFFIN Ahmad Kamal. Finite element simulation of stress intensity factors in elastic-plastic crack growth[J]. Journal of Zhejiang University Science A, 2006, 7(8): 1336-1342.
@article{title="Finite element simulation of stress intensity factors in elastic-plastic crack growth",
author="ALSHOAIBI Abdulnaser M., ARIFFIN Ahmad Kamal",
journal="Journal of Zhejiang University Science A",
volume="7",
number="8",
pages="1336-1342",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1336"
}
%0 Journal Article
%T Finite element simulation of stress intensity factors in elastic-plastic crack growth
%A ALSHOAIBI Abdulnaser M.
%A ARIFFIN Ahmad Kamal
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 8
%P 1336-1342
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1336
TY - JOUR
T1 - Finite element simulation of stress intensity factors in elastic-plastic crack growth
A1 - ALSHOAIBI Abdulnaser M.
A1 - ARIFFIN Ahmad Kamal
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 8
SP - 1336
EP - 1342
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1336
Abstract: A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.
[1] Akisanya, A.R., Fleck, N.A., 1992. Brittle fracture of adhesive joints. International Journal of Fracture, 58(2):93-114.
[2] Ariffin, A.K., 1995. Powder Compaction, Finite Element Modelling and Experimental Validation. Ph.D Thesis, University of Wales Swansea.
[3] Chan, S.K., Tuba, I.S., Wilson, W.K., 1970. On the finite element method in linear fracture mechanics. Engineering Fracture Mechanics, 2(1):1-17.
[4] Duarte, C.A., 1996. The Hp Clouds Method. Ph.D Thesis, University of Texas, Austin.
[5] El-Hamalawi, A., 2004. A 2D combined advancing front Delaunay mesh generation scheme. Finite Element in Analysis and Design, 40:967-989.
[6] Erdogan, F., Sih, G.C., 1963. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85:519-527.
[7] Fan, S.C., Liu, X., Lee, C.K., 2004. Enriched partition-of-unity finite element method for stress intensity factors at crack tips. Computers and Structures, 82:445-461.
[8] Gallimard, L., Ladevèze, P., Pelle, J.P., 1996. Error estimation and adaptivity in elastoplasticity. International Journal of Numerical Methods in Engineering, 39(2):189-217.
[9] Geubelle, P.H., Knauss, W.G., 1994. Crack propagation at and near bimaterial interfaces: linear analysis. Journal of Applied Mechanics, 61:560-566.
[10] Guinea, G.V., Planan, J., Elices, M., 2000. KI evaluation by the displacement extrapolation technique. Engineering Fracture Mechanics, 66(3):243-255.
[11] Hutchinson, J.W., Suo, Z., 1992. Mixed mode cracking in layered materials. Advances in Applied Mechanics, 29:63-191.
[12] Moran, B., Shih, C.F., 1987. A general treatment of crack tip contour integrals. Engineering Fracture Mechanics, 35:295-310.
[13] Nuismer, R.J., 1975. An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 11(2):245-250.
[14] Parks, D.M., 1974. A stiffness derivative finite element technique for determination of crack tip stress intensity factors. International Journal of Fracture, 10(4):487-502.
[15] Phongthanapanich, S., Dechaumphai, P., 2004. Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Element in Analysis and Design, 40:1753-1771.
[16] Rao, B.N., Rahman, S., 2001. A coupled meshless-finite element method for fracture analysis of cracks. International Journal of Pressure Vessels and Piping, 78(9):647-657.
[17] Sandhu, J.S., Liebowitz, H., 1995. Examples of adaptive FEA in plasticity. Engineering Fracture Mechanics, 50:947-956.
[18] Shih, C.F., de Lorenzi, H.G., German, M.D., 1976. Crack extension modeling with singular quadratic isoparametric elements. International Journal of Fracture, 12:647-651.
[19] Sih, G.C., 1974. Strain-energy-density factor applied to mixed-mode crack problems. International Journal of Fracture, 10(3):305-321.
[20] Tada, H., Paris, P.C., Irwin, G.R., 2000. The Stress Analysis of Cracks Handbook. ASME Press, New York.
[21] Zienkiewicz, O.C., Zhu, J.Z., 1989. Error estimates and adaptive refinement for plate bending problems. International Journal for Numerical Methods in Engineering, 28(12):2839-2853.
Open peer comments: Debate/Discuss/Question/Opinion
<1>