Full Text:   <3907>

CLC number: TB114.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 7225

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.11 P.1819-1830

http://doi.org/10.1631/jzus.2006.A1819


Influence of surface treatments on fatigue life of a two-stroke free piston linear engine component using random loading


Author(s):  RAHMAN M.M., ARIFFIN A.K., JAMALUDIN N., HARON C.H.C.

Affiliation(s):  Department of Mechanical and Materials Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor DE, Malaysia

Corresponding email(s):   mustafiz@eng.ukm.my, kamal@eng.ukm.my

Key Words:  Vibration fatigue, Finite element (FE), Power spectral density function, Frequency response, Surface treatment


RAHMAN M.M., ARIFFIN A.K., JAMALUDIN N., HARON C.H.C.. Influence of surface treatments on fatigue life of a two-stroke free piston linear engine component using random loading[J]. Journal of Zhejiang University Science A, 2006, 7(11): 1819-1830.

@article{title="Influence of surface treatments on fatigue life of a two-stroke free piston linear engine component using random loading",
author="RAHMAN M.M., ARIFFIN A.K., JAMALUDIN N., HARON C.H.C.",
journal="Journal of Zhejiang University Science A",
volume="7",
number="11",
pages="1819-1830",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1819"
}

%0 Journal Article
%T Influence of surface treatments on fatigue life of a two-stroke free piston linear engine component using random loading
%A RAHMAN M.M.
%A ARIFFIN A.K.
%A JAMALUDIN N.
%A HARON C.H.C.
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 11
%P 1819-1830
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1819

TY - JOUR
T1 - Influence of surface treatments on fatigue life of a two-stroke free piston linear engine component using random loading
A1 - RAHMAN M.M.
A1 - ARIFFIN A.K.
A1 - JAMALUDIN N.
A1 - HARON C.H.C.
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 11
SP - 1819
EP - 1830
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1819


Abstract: 
This paper describes the finite element (FE) analysis technique to predict fatigue life using the narrow band frequency response approach. The life prediction results are useful for improving the component design methodology at the very early development stage. The approach is found to be suitable for a periodic loading but requires very large time records to accurately describe random loading processes. This paper is aimed at investigating the effects of surface treatments on the fatigue life of the free piston linear engine’s components. Finite element modelling and frequency response analysis were conducted using computer aided design and finite element analysis commercial codes, respectively. In addition, the fatigue life prediction was carried out using finite element based fatigue analysis commercial code. Narrow band approach was specially applied to predict the fatigue life of the free piston linear engine cylinder block. Significant variation was observed between the surface treatments and untreated cylinder block of free piston engine. The obtained results indicated that nitrided treatment yielded the longest life. This approach can determine premature products failure phenomena, and therefore can reduce time to market, improve product reliability and customer confidence.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Baek, W.K., Stephens, R.I., Dopker, B., 1993. Integrated computational durability analysis. Journal of Engineering for Industry, Transactions of the ASME, 115(4):492-499.

[2] Bannantine, S.A., Comer, J.J., Handrock, J.L., 1990. Fundamentals of Metal Fatigue Analysis. Prentice-Hall, New Jersey, USA.

[3] BDA (Basic Dynamic Analysis), 2002. User’s Guide, MSC.Nastran Version 68. MSC.Software Corporation, USA.

[4] Bendat, J.S., 1964. Probability Functions for Random Responses. NASA report on Contract NASA-5-4590.

[5] Benedetti, M., Fortanari, V., Hohn, B.R., Oster, P., Tobie, T., 2002. Influence of shot peening on bending tooth fatigue limit of case hardened gears. International Journal of Fatigue, 24(11):1127-1136.

[6] Bishop, N.W.M., Sherratt, F., 2000. Finite Element Based Fatigue Calculations. NAFEMS Ltd., UK.

[7] Boms, R., Whitacre, D., 2005. Optimization Design of Aluminum Suspension Components Using an Integrated Approach. SAE Paper No. 95M-2.

[8] Crandell, S.H., Mark, W.D., 1973. Random Vibration in Mechanical Systems. Academic Press, New York.

[9] Formenti, D., 1999. The relationship between % of critical and actual damping in a structure. Sound & Vibrations, 33(4):14-18.

[10] Gade, S., Herlufsen, H., Konstantin-Hansen, H., 2002. How to determine the modal parameters of simple structures. Sound & Vibrations, 36(1):72-73.

[11] Inoue, K., Maehara, T., Yamanaka, M., 1989. The effect of Shot peening on the bending strength of carburized gear teeth. JSME Inter. Journal Series III, 32(3):448-454.

[12] Juvinall, R.C., Marshek, K.M., 1991. Fundamentals of Machine Component Design. John Willey and Sons, New York, USA.

[13] Kim, H.S., Yim, H.J., Kim, C.B., 2002. Computational durability prediction of body structures in prototype vehicles. International Journal of Automotive Technology, 3(4):129-135.

[14] Kobayashi, M., Matsui, T., Murakami, Y., 1998. Mechanism of creation of compressive residual stress by shot peening. International Journal of Fatigue, 20(5):351-357.

[15] Kuo, E.Y., Kelkar, S.G., 1995a. Vehicle Body Structure Durability Analysis. SAE Paper No. 951096.

[16] Kuo, E.Y., Kelkar, S.G., 1995b. Body structure durability analysis. Automotive Engineering, 103(7):73-77.

[17] Lillamand, I., Barrallier, L., Sprauel, J.M., Chiron, R., 2000. Macroscopic and macroscopic evolutions of a shot peened layer during isothermal recovery. Metallurgical and Materials Transactions A, 31A:213-219.

[18] Lipson, C., Juvinall, R.C., 1963. Handbook of Stress and Strength: Design and Material Applications. Macmillan & Co., New York, USA.

[19] MSC, 2004. MSC/FATIGUE User’s Guide, Vol. 1 & 2. MSC/Corporation, USA.

[20] Newland, D.E., 1993. An Introduction to Random Vibrations, Spectral and Wavelet Analysis. Longman Scientific and Technical, Essex, UK.

[21] Okumiya, M., Tsunekawa, Y., Murayama, T., 2001. Surface modification of aluminum using ion nitriding and fluidize bed. Surface and Coatings Technology, 142-144:235-240.

[22] Okumiya, M., Tsunekawa, Y., Sugiyama, H., Tanaka, Y., Takano, N., Tomimoto, M., 2005. Surface modification of aluminum using ion nitriding and barrel nitriding. Surface and Coatings Technology, 200(1-4):35-39.

[23] Rahman, M.M., Ariffin, A.K., 2005. Vibration fatigue analysis of cylinder head of a new two-stroke free piston engine using finite element approach. Journal of Structural Integrity and Durability, 1(2):121-129.

[24] Rahman, M.M., Ariffin, A.K., Jamaluddin, N., Haron, C.H.C., 2005a. Fundamental Aspects of Finite Element Based Durability and Fatigue Analysis of Linear Generator Engine. Proceeding of the International Conference on Recent Advances in Mechanical and Materials Engineering (ICRAMME 2005), p.1105-1110.

[25] Rahman, M.M., Ariffin, A.K., Jamaludin, N., Haron, C.H.C., 2005b. Modelling and Analysis of Cylinder Block of Linear Generator Engine for Fatigue Durability. Proceeding in the 4th International Conference on Numerical Analysis of Engineering (NAE-2005), Hotel SANTIKA, Yogyakarta, Indonesia, p.107-113.

[26] Rahman, M.M., Ariffin, A.K., Jamaludin, N., Haron, C.H.C., 2005c. Analytical and Finite Element Based Fatigue Life Assessment of Vibration Induced Fatigue Damage. The Second International Conference on Research and Education in Mathematics (ICREM 2), Residence Hotel, Putrajaya, Malaysia, p.331-345.

[27] Rahman, M.M., Ariffin, A.K., Jamaluddin, N., Haron, C.H.C., 2005d. Vibration Fatigue Analysis of Linear Generator Engine Using Frequency response Approach. Proceeding of the National Seminar on Advances in Malaysian Noise, Vibration and Comfort 2005 (NVC-2005), p.277-286.

[28] Rahman, M.M., Ariffin, A.K., Jamaluddin, N., Haron, C.H.C., 2005e. Vibration Fatigue Analysis of a New Two-stroke Linear Generator Engine Using Finite Element Simulation. Proceedings of the National Seminar on Computational and Experimental Mechanics (CEM2005), p.259-267.

[29] Rahman, M.M., Ariffin, A.K., Jamaluddin, N., Haron, C.H.C., 2005f. Prediction of Fatigue Life of Aluminum Alloys Cylinder Block Subjected to Constant and Variable Amplitude Loading Conditions Using Total Life Approach. Proceeding of the Brunei International Conference on Engineering and Technology (BICET2005), 5:139-150.

[30] Rahman, M.M., Ariffin, A.K., Jamaluddin, N., Haron, C.H.C., 2005g. Finite Element Based Life Prediction of Linear Generator Engine Mounting. Proceeding of the National Seminar on Computational and Experimental Mechanics (CEM-2005), p.313-321.

[31] Reemsnyder, H.S., 1985. Simplified Stress-life Model. Bethleham Steel Corporation Report, Bethleham, PA.

[32] Rice, S.O., 1954. Mathematical Analysis of Random Noise. Selected Papers on Noise and Stochastic Processes, Dover, New York.

[33] Rodopoulos, C.A., Curtis, S.A., de Los Rios, E.R., SolisRomero, J., 2004. Optimisation of the fatigue resistance of 2024-T351 aluminum alloys by controlled shot peening-methodology, results and analysis. International Journal of Fatigue, 26(8):849-856.

[34] Schaeffer, H.G., 2001. MSC.NASTRAN Primer for Linear Analysis. MSC.Software Corporation, USA.

[35] Stephens, R.I., Fatemi, A., Stephens, R.R., Fuchs, H.O., 2001. Metal Fatigue in Engineering. John Wiley and Sons, Inc., New York, USA.

[36] Takeuchi, H., Tamura, S., Tsunekawa, Y., Okumiya, M., 2004. Application of electrolyte jet to rapid composite electroplating. Surface Engineering, 20(1):25-30.

[37] Tomida, S., Nakata, K., 2003. Fe-Al composite layers on aluminum alloy formed by laser surface alloying with ion powder. Surface and Coatings Technology, 174-175:559-563

[38] Torres, M.A.S., Voorwald, H.J.C., 2002. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. International Journal of Fatigue, 24(8):877-886.

[39] Tsunekawa, Y., Ueno, T., Okumiya, M., Yashiro, T., 2003. Plasma sprayed coating with water and gas atomized steel powders. Surface Engineering, 19(1):17-22.

[40] Tucker, L., Bussa, S., 1977. The SAE Cumulative Fatigue Damage Test Program: Fatigue under Complex Loading. In: Wetzel, R.M. (Ed.), Analysis and Experiments. SAE, Warrendale, PA, USA, p.1-54.

[41] Vissutipitukul, P., Aizawa, T., 2005. Wear of plasma nitrided aluminum alloys. Wear, 259(1-6):482-489.

[42] Wirsching, P.H., Paez, T.L., Oritz, K., 1995. Random Vibration, Theory and Practice. John Wiley and Sons, Inc., New York, USA.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE