Full Text:   <3177>

CLC number: TB303

On-line Access: 

Received: 2005-08-10

Revision Accepted: 2005-10-19

Crosschecked: 0000-00-00

Cited: 42

Clicked: 5207

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2006 Vol.7 No.4 P.299-303


Band structures of TiO2 doped with N, C and B

Author(s):  Xu Tian-Hua, Song Chen-Lu, Liu Yong, Han Gao-Rong

Affiliation(s):  Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   Songcl@zju.edu.cn

Key Words:  CASTEP code, Titanium dioxide, Band structure, Charge density

Xu Tian-Hua, Song Chen-Lu, Liu Yong, Han Gao-Rong. Band structures of TiO2 doped with N, C and B[J]. Journal of Zhejiang University Science B, 2006, 7(4): 299-303.

@article{title="Band structures of TiO2 doped with N, C and B",
author="Xu Tian-Hua, Song Chen-Lu, Liu Yong, Han Gao-Rong",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Band structures of TiO2 doped with N, C and B
%A Xu Tian-Hua
%A Song Chen-Lu
%A Liu Yong
%A Han Gao-Rong
%J Journal of Zhejiang University SCIENCE B
%V 7
%N 4
%P 299-303
%@ 1673-1581
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.B0299

T1 - Band structures of TiO2 doped with N, C and B
A1 - Xu Tian-Hua
A1 - Song Chen-Lu
A1 - Liu Yong
A1 - Han Gao-Rong
J0 - Journal of Zhejiang University Science B
VL - 7
IS - 4
SP - 299
EP - 303
%@ 1673-1581
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.B0299

This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Asahi, R., Taga, Y., Mannstadt, W., Freeman, A.J., 2000. Electronic and optical properties of anatase TiO2. Phys. Rev. B, 61(11):7459.

[2] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293(5528):269-271.

[3] Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W., Smith, J.V., 1987. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc., 109(12):3639.

[4] Byrne, J., Anthony, E., Brian, R., 1998. Photoelectrochemistry of oxalate on particulate TiO2 electrodes. Journal of Electroanalytical Chemistry, 457(1-2):61-72.

[5] Ceperley, D.M., Alder, B.J., 1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45(7):566-569.

[6] Choi, W., Termin, A., Hoffmann, M.R., 1994. The role of Metal-ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem., 98(51):13669-13679.

[7] Choi, Y., Umebayashi, T., Yoshikawa, M., 2004. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. Journal of Materials Science, 39(5):1837-1839.

[8] Di Valentin, C., Pacchioni, G., Selloni, A., 2004. Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys. Rev. B, 70:085116.

[9] Irie, H., Watanabe, Y., Hashimoto, K., 2003. Nitrogen-concentration dependence on photocatalytic, activity of TiO2−xNx powders. J. Phys. Chem. B, 107(23):5483-5486.

[10] Khan, S.U.M., Al-Shahry, M., Ingler, W.B.Jr, 2002. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297(5590):2243-2245.

[11] Lee, J.Y., Park, J., Cho, J.H., 2005. Electronic properties of N- and C-doped TiO2. Appl. Phys. Lett., 87(1):011904.

[12] Moon, S.C., Mametsuka, H., Tabata, S., Suzuki, E., 2000. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catalysis Today, 58(2-3):125-132.

[13] Perdew, J.P., 1983. Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett., 51(20):1884-1887.

[14] Perdew, J.P., Zunger, A., 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23(10):5048.

[15] Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18):3865-3868.

[16] Segall, M.D., Lindan, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. Payne, M.C., 2002. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter, 14(11):2717-2743.

[17] Yoneyama, H., Torimoto, T., 2000. Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catalysis Today, 58(2-3):133-140.

[18] Zhu, Y.F., Zhang, L., Yao, W.Q., Cao, L.L., 2000. The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-Gel method with TiCl4 as a precursor. Applied Surface Science, 158(1-2):32-37.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE