CLC number: TB6; TK91
On-line Access:
Received: 2006-03-14
Revision Accepted: 2006-08-10
Crosschecked: 0000-00-00
Cited: 2
Clicked: 6171
MAIGA Abdoulaye Siddeye, CHEN Guang-ming, WANG Qin. Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems[J]. Journal of Zhejiang University Science A, 2007, 8(2): 216-220.
@article{title="Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems",
author="MAIGA Abdoulaye Siddeye, CHEN Guang-ming, WANG Qin",
journal="Journal of Zhejiang University Science A",
volume="8",
number="2",
pages="216-220",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0216"
}
%0 Journal Article
%T Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems
%A MAIGA Abdoulaye Siddeye
%A CHEN Guang-ming
%A WANG Qin
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 2
%P 216-220
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0216
TY - JOUR
T1 - Experimental adsorption equilibrium study and comparison of zeolite with water and ethanol for cooling systems
A1 - MAIGA Abdoulaye Siddeye
A1 - CHEN Guang-ming
A1 - WANG Qin
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 2
SP - 216
EP - 220
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0216
Abstract: Two adsorption refrigeration working pairs of zeolite with water and ethanol were studied and the parameters of Dubinin-Astakhov model were regressed using the experimental data of equilibrium. The coefficient of heterogeneity varied from 1.305 to 1.52 for the zeolite-water pair and from 1.73 to 2.128 for zeolite-ethanol pair. The maximum adsorption capacity varied from 0.315 to 0.34 for zeolite-water and 0.23 to 0.28 for zeolite-ethanol, respectively. The results showed that the zeolite-water pair is suitable for solar energy cooling not only because of the high latent heat of vaporization of water but also because of the better equilibrium performance. On the other hand, zeolite-ethanol gives a high adsorption capacity at high regeneration temperature, which means it can be used in heat engine systems like buses and cars.
[1] Bidyut, B.S., Atsushi, A., Takao, K., 1997. Silica gel water advanced adsorption refrigeration cycle. Energy-The International Journal, 22(4):437-447.
[2] Breck, D.W., 1974. Zeolite Molecular Sieves. John Wiley, New York.
[3] Cassioa, G., Cammarata, G., Fichera, A., Restuccia, G., 1992. Advances on Innovative Heat Exchangers in Adsorption Heat Pumps. Proc. Symp. le Froid a Sorption Solide, Paris.
[4] Critoph, R.E., 1994. Forced convection enhancement of adsorption cycles. Heat Recovery System and CHP, 14(4):343-350.
[5] Cui, Q., Tao, G., Chen, H.J., Guo, X.Y., Yao, H.Q., 2005. Environmental benign working pairs for adsorption refrigeration. Energy, 30(2-4):261-271.
[6] Douss, N., Meunier, F., 1989. Experimental study of cascading adsorption cycles. Chem. Eng. Sci., 44(2):225-235.
[7] Gregg, S.J., 1986. Sixty years in the physical adsorption of gases. Colloids and Surfaces, 21(1):109-124.
[8] Lu, Y.Z., Wang, R.Z., Jianzhou, S., Zhang, M., Xu, Y.X., Wu, J.Y., 2004. Performance of a diesel locomotive waste-heat-powered adsorption air conditioning system. Adsorption, 10(1):57-68.
[9] Marsh, H., 1987. Adsorption methods to study microporosity in coals and carbons. Carbon, 25(1):49-57.
[10] Ramos, M., Rafael, L.E., Manfred, J.H., 2003. Evaluation of a Zeolite-Water Solar Adsorption Refrigerator. ISES Solar World Congress 2003, Sweden.
[11] Rockenfeller, U., Kirol, L.D., Sarkisian, P., Ryan, W., 1992. Advancing Heat Pump Staging for Complex Compound Chemisorptions System. Proc. Symp. le Froid a Sorption Solide, Paris.
[12] Rodrigez-Reinoso, F., 1997. Activated Carbon Structure, Characterization, Preparation and Applications. In: Marsh, H., Heintz, E.A., Rodrigez-Reinoso, F. (Eds.), Introduction to Carbon Technologies. Edward Arnold, Great Britain, p.35-101.
[13] Rudzinski, W., Everett, D.H., 1992. Adsorption of Gases on Heterogenous Surfaces. Academic Press Inc., San Diego, CA.
[14] Shelton, S.V., Wepfer, W.J., Miles, D.J., 1990. Ramp wave analysis of the solid-vapor heat pump. J. Energy Res. Technol., 112:69-77.
[15] Spinner, B., 1992. Les Transformations Thermochimiques a Ammoniac. Proc. Symp. le Froid a Sorption Solide, Paris.
[16] Wang, R.Z., Oliveira, R.G., 2005. Adsorption Refrigeration —An Efficient Way to Make Good Use Waste Heat and Solar Energy. International Sorption Heat Pump Conference, Denver, CO, USA.
[17] Wang, R.Z., Wang, Q.B., 1999. Adsorption mechanism and improvements of adsorption equation for adsorption refrigeration pairs. International Journal of Energy Research, 23(10):887-898.
Open peer comments: Debate/Discuss/Question/Opinion
<1>