CLC number: TP391.72
On-line Access:
Received: 2006-09-20
Revision Accepted: 2006-11-17
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4901
JUHÁSZ Imre. Vanishing torsion of parametric curves[J]. Journal of Zhejiang University Science A, 2007, 8(4): 593-595.
@article{title="Vanishing torsion of parametric curves",
author="JUHÁSZ Imre",
journal="Journal of Zhejiang University Science A",
volume="8",
number="4",
pages="593-595",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0593"
}
%0 Journal Article
%T Vanishing torsion of parametric curves
%A JUHÁ
%A SZ Imre
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 4
%P 593-595
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0593
TY - JOUR
T1 - Vanishing torsion of parametric curves
A1 - JUHÁ
A1 - SZ Imre
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 4
SP - 593
EP - 595
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0593
Abstract: We consider the class of parametric curves that can be represented by combination of control points and basis functions. A control point is let vary while the rest is held fixed. It’s shown that the locus of the moving control point that yields points of zero torsion is the osculating plane of the corresponding discriminant curve at its point of the same parameter value. The special case is studied when the basis functions sum to one.
[1] Juhász, I., 2006. On the singularity of a class of parametric curves. Computer Aided Geometric Design, 23(2):146-156.
[2] Li, Y.M., Cripps, R.J., 1997. Identification of inflection points and cusps on rational curves. Computer Aided Geometric Design, 14(5):491-497.
[3] Manocha, D., Canny, J.F., 1992. Detecting cusps and inflection points in curves. Computer Aided Geometric Design, 9(1):1-24.
[4] Meek, D.S., Walton, D.J., 1990. Shape determination of planar uniform cubic B-spline segments. Computer-Aided Design, 22(7):434-441.
[5] Monterde, J., 2001. Singularities of rational Bézier curves. Computer Aided Geometric Design, 18(8):805-816.
[6] Sakai, M., 1999. Inflection points and singularities on planar rational cubic curve segments. Computer Aided Geometric Design, 16(3):149-156.
[7] Stone, M.C., DeRose, T.D., 1989. A geometric characterization of parametric cubic curves. ACM Transactions on Graphics, 8(3):147-163.
[8] Wang, C.Y., 1981. Shape classification of the parametric cubic curve and parametric B-spline cubic curve. Computer-Aided Design, 13(4):199-206.
Open peer comments: Debate/Discuss/Question/Opinion
<1>