CLC number: TN911.2
On-line Access:
Received: 2006-06-29
Revision Accepted: 2006-12-07
Crosschecked: 0000-00-00
Cited: 1
Clicked: 6122
ZHAO Zhen-shan, XU Guo-zhi. Optimal transmission strategy for spatially correlated MIMO systems with channel statistical information[J]. Journal of Zhejiang University Science A, 2007, 8(4): 615-619.
@article{title="Optimal transmission strategy for spatially correlated MIMO systems with channel statistical information",
author="ZHAO Zhen-shan, XU Guo-zhi",
journal="Journal of Zhejiang University Science A",
volume="8",
number="4",
pages="615-619",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0615"
}
%0 Journal Article
%T Optimal transmission strategy for spatially correlated MIMO systems with channel statistical information
%A ZHAO Zhen-shan
%A XU Guo-zhi
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 4
%P 615-619
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0615
TY - JOUR
T1 - Optimal transmission strategy for spatially correlated MIMO systems with channel statistical information
A1 - ZHAO Zhen-shan
A1 - XU Guo-zhi
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 4
SP - 615
EP - 619
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0615
Abstract: In real multiple-input multiple-output (MIMO) systems, the perfect channel state information (CSI) may be costly or impossible to acquire. But the channel statistical information can be considered relatively stationary during long-term transmission. The statistical information can be obtained at the receiver and fed back to the transmitter and do not require frequent update. By exploiting channel mean and covariance information at the transmitter simultaneously, this paper investigates the optimal transmission strategy for spatially correlated MIMO channels. An upper bound of ergodic capacity is derived and taken as the performance criterion. Simulation results are also given to show the performance improvement of the optimal transmission strategy.
[1] Bolcskei, H., Borgmann, M., Paulraj, A.J., 2003. Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM. IEEE J. Select. Areas Commun., 21(3):427-439.
[2] Foschini, G.J., Gans, M.J., 1998. On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Personal Commun., 6(3):311-335.
[3] Gupta, A.K., Nagar, D.K., 2000. Matrix Variate Distributions. Chapman & Hall/CRC, New York, p.251-253.
[4] Jafar, S., Goldsmith, A., 2004. Transmitter optimization and optimality of beamforming for multiple antenna systems. IEEE Trans. Wirel. Commun., 3(4):1165-1175.
[5] Jongren, G., Skoglund, M., Ottersten, B., 2002. Combining beamforming and orthogonal space-time block coding. IEEE Trans. Inf. Theory, 48(3):611-627.
[6] Jorswieck, E.A., Boche, H., 2004. Channel capacity and capacity-range of beamforming in MIMO wireless systems under correlated fading with covariance feedback. IEEE Trans. Wirel. Commun., 3(5):1543-1553.
[7] Jorswieck, E.A., Boche, H., 2006. Performance analysis of MIMO systems in spatially correlated fading using matrix-monotone functions. IEICE Trans. Fundam., E89-A (5):1454-1472.
[8] Liu, L., Jafarkhani, H., 2005. Application of quasi-orthogonal space-time block codes in beamforming. IEEE Trans. on Signal Processing, 53(1):54-63.
[9] Sampath, H., Paulraj, A., 2002. Linear precoding for space-time coded systems with known fading correlations. IEEE Commun. Lett., 6(6):239-241.
[10] Telatar, I.E., 1999. Capacity of multi-antenna Gaussian channels. European Trans. Telecommun., 10(6):585-595.
[11] Venkatesan, S., Simon, S.H., Valenzuela, R.A., 2003. Capacity of a Gaussian MIMO Channel with Nonzero Mean. Proc. IEEE Vehicular Tech. Conf., p.1767-1771.
[12] Visotsky, E., Madhow, U., 2001. Space-time transmit precoding with imperfect feedback. IEEE Trans. Inf. Theory, 47(6):2632-2639.
[13] Vu, M., Paulraj, A., 2004. Linear Precoding for MIMO Channels with Non-zero Means and Transmit Correlation in Orthogonal Space-time Coded Systems. Proc. IEEE Vehicular Tech. Conf., p.1113-1116.
[14] Vucetic, B., Yuan, J.H., 2004. Space-time Coding. John Wiley & Sons, Chichester, UK, p.8-9.
[15] Zhou, S., Giannakis, G.B., 2002. Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback. IEEE Trans. Signal Processing, 50(10):2599-2613.
[16] Zhou, S., Giannakis, G.B., 2003. Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations. IEEE Trans. Inf. Theory, 49(7):1673-1690.
Open peer comments: Debate/Discuss/Question/Opinion
<1>