CLC number: TN929.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-12-20
Cited: 0
Clicked: 8144
Jian-qiao Chen, Zhi Zhang, Tian Tang, Yu-zhen Huang. A non-stationary channel model for 5G massive MIMO systems[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(12): 2101-2110.
@article{title="A non-stationary channel model for 5G massive MIMO systems",
author="Jian-qiao Chen, Zhi Zhang, Tian Tang, Yu-zhen Huang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="12",
pages="2101-2110",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700028"
}
%0 Journal Article
%T A non-stationary channel model for 5G massive MIMO systems
%A Jian-qiao Chen
%A Zhi Zhang
%A Tian Tang
%A Yu-zhen Huang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 12
%P 2101-2110
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700028
TY - JOUR
T1 - A non-stationary channel model for 5G massive MIMO systems
A1 - Jian-qiao Chen
A1 - Zhi Zhang
A1 - Tian Tang
A1 - Yu-zhen Huang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 12
SP - 2101
EP - 2110
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700028
Abstract: We propose a novel channel model for massive multiple-input multiple-out (MIMO) communication systems that incorporate the spherical wave-front assumption and non-stationary properties of clusters on both the array and time axes. Because of the large dimension of the antenna array in massive MIMO systems, the spherical wave-front is assumed to characterize near-field effects resulting in angle of arrival (AoA) shifts and Doppler frequency variations on the antenna array. Additionally, a novel visibility region method is proposed to capture the non-stationary properties of clusters at the receiver side. Combined with the birth-death process, a novel cluster evolution algorithm is proposed. The impacts of cluster evolution and the spherical wave-front assumption on the statistical properties of the channel model are investigated. Meanwhile, corresponding to the theoretical model, a simulation model with a finite number of rays that capture channel characteristics as accurately as possible is proposed. Finally, numerical analysis shows that our proposed non-stationary channel model is effective in capturing the characteristics of a massive MIMO channel.
[1]3GPP TR 25.996(Release 12), 2014. Spatial channel model for multiple input multiple output (MIMO). http://www.3gpp.org
[2]Babich, F., Lombardi, G., 2000. A Markov model for the mobile propagation channel. IEEE Trans. Veh. Technol., 49(1):63-73.
[3]Bohagen, F., Orten, P., Oien, G.E., 2006. Modeling of line-of-sight 2×2 MIMO channels: spherical versus plane waves. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, p.1-5.
[4]Chong, C.C., Tan, C.M., Laurenson, D.I., et al., 2005. A novel wideband dynamic directional indoor channel model based on a Markov process. IEEE Trans. Wireless Commun., 4(4):1539-1552.
[5]Deniz, O., Castrillon, M., Lorenzo, J., et al., 2010. Computer vision based eyewear selector. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(2):79-91.
[6]Gao, X., Tufvesson, F., Edfors, O., et al., 2012. Measured propagation characteristics for very-large MIMO at 2.6 GHz. 46th Asilomar Conf. Signals, Systems and Computers, p.295-299.
[7]Gao, X., Tufvesson, F., Edfors, O., 2013. Massive MIMO channels&x2014; measurements and models. Asilomar Conf. Signals, Systems and Computers, p.280-284.
[8]Kyösti, P., Meinilä, J., Hentilä, L., et al., 2007. Winner II channel models part II radio channel measurement and analysis results. Tech. Rep., isT-4-027756.
[9]Larsson, E.G., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2):186-195.
[10]Li, X.R., Zhou, S.D., Bjornson, E., et al., 2015. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems. IEEE Trans. Wireless Commun., 14(12):7044-7056.
[11]Liu, L.F., Oestges, C., Poutanen, J., et al., 2012. The cost 2100 MIMO channel model. IEEE Wirel. Commun., 19(6):92-99.
[12]Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Sign. Proces., 8(5):742-758.
[13]Paetzold, M., 2011. Mobile Radio Channels. 2nd ed. John Wiley and Sons, West Sussex, UK.
[14]Payami, S., Tufvesson, F., 2012. Channel measurements and analysis for very large array systems at 2.6 GHz. 6th Eur. Conf. Antennas and Propagation, p.433-437.
[15]Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag., 30(1):40-60.
[16]Schumacher, L., Pedersen, K.I., Mogensen, P.E., 2002. From antenna spacings to theoretical capacities&x2014;guidelines for simulating MIMO systems. 13th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, 2:587-592.
[17]Wang, C.X., Haider, F., Gao, X.Q., et al., 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag., 52(2):122-130.
[18]Wu, H.L., Jin, S., Gao, X.Q., 2015. Non-stationary multi-ring channel model for massive MIMO systems. Int. Conf. Wireless Communications & Signal Processing, p.1-6.
[19]Wu, S.B., Wang, C.X., Aggoune, E.H.M., et al., 2014. A non-stationary 3D wideband twin-cluster model for 5G massive MIMO channels. IEEE J. Sel. Areas Commun., 32(6):1207-1218.
[20]Wu, S.B., Wang, C.X., Haas, H., et al., 2015. A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wireless Commun., 14(3):1434-1446.
[21]Xie, Y., Li, B., Zuo, X.Y., et al., 2015. A 3D geometry-based stochastic model for 5G massive MIMO channels. Int. Conf. Heterogeneous Networking for Quality, Reliability, Security and Robustness, p.216-222.
[22]Yaghjian, A.D., 1986. An overview of near-field antenna measurements. IEEE Trans. Antennas Propag., 34(1):30-45.
[23]Zheng, K., Ou, S.L., Yin, X.F., 2014. Massive MIMO channel models: a survey. Int. J. Antennas Propag., 2014(11):1-10.
[24]Zwick, T., Fischer, C., Didascalou, D, et al., 2000. A stochastic spatial channel model based on wave-propagation modeling. IEEE J. Sel. Areas Commun., 18(1):6-15.
[25]Zwick, T., Fischer, C., Wiesbeck, W., 2002. A stochastic multipath channel model including path directions for indoor environments. IEEE J. Sel. Areas Commun., 20(6):1178-1192.
Open peer comments: Debate/Discuss/Question/Opinion
<1>