CLC number: TP391
On-line Access:
Received: 2006-02-11
Revision Accepted: 2006-09-21
Crosschecked: 0000-00-00
Cited: 2
Clicked: 5640
LI Guo-qi, SHENG Huan-ye. Classification analysis of microarray data based on ontological engineering[J]. Journal of Zhejiang University Science A, 2007, 8(4): 638-643.
@article{title="Classification analysis of microarray data based on ontological engineering",
author="LI Guo-qi, SHENG Huan-ye",
journal="Journal of Zhejiang University Science A",
volume="8",
number="4",
pages="638-643",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0638"
}
%0 Journal Article
%T Classification analysis of microarray data based on ontological engineering
%A LI Guo-qi
%A SHENG Huan-ye
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 4
%P 638-643
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0638
TY - JOUR
T1 - Classification analysis of microarray data based on ontological engineering
A1 - LI Guo-qi
A1 - SHENG Huan-ye
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 4
SP - 638
EP - 643
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0638
Abstract: Background knowledge is important for data mining, especially in complicated situation. ontological engineering is the successor of knowledge engineering. The sharable knowledge bases built on ontology can be used to provide background knowledge to direct the process of data mining. This paper gives a common introduction to the method and presents a practical analysis example using SVM (support vector machine) as the classifier. Gene Ontology and the accompanying annotations compose a big knowledge base, on which many researches have been carried out. microarray dataset is the output of DNA chip. With the help of Gene Ontology we present a more elaborate analysis on microarray data than former researchers. The method can also be used in other fields with similar scenario.
[1] Allison, D.B., 2005. DNA Microarrays and Related Genomic Techniques: Statistical Design, Analysis, and Interpretation of Experiments. Chapman & Hall/CRC, p.5-9.
[2] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherr, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al., 2000. Gene Ontology: tool for the unification of biology. Nat. Genet., 25:25-29.
[3] Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L., 2006. GenBank. Nucleic Acids Research, 34(Database issue):16-20.
[4] Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M.Jr, Haussler, D., 2000. Knowledge-based analysis of microarray gene expression data using support vector machines. PNAS, 97(1):262-267.
[5] Burges, C., 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167.
[6] Chang, C.C., Lin, C.J., 2001. LIBSVM: A Library for Support Vector Machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[7] Chou, K.C., Cai, Y.D., 2003. A new hybrid approach to predict subcellular localization of proteins by incorporating Gene Ontology. Biochem. Biophys. Research Commun., 311(3):743-747.
[8] Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., 1998. Cluster analysis and display of genome-wide expression patterns. PNAS, 95(25):14863-14868.
[9] Gruber, T.R., 1995. Toward principles for the design of ontologies used for knowledge sharing. Int. J. Human-Computer Studies, 43(5-6):907-928.
[10] Kennedy, P.J., Simoff, S.J., Skillicorn, D.B., Catchpoole, D., 2004. Extracting and Explaining Biological Knowledge in Microarray Data. Pacific-Asia Conference on Knowledge Discovery and Data Mining, p.699-703.
[11] Mizoguchi, R., 2003. Tutorial on ontological engineering— Part 1: introduction to ontological engineering. New Generation Computing, 21(4):365-384.
[12] Pavlidis, P., Qin, J., Arango, V., Mann, J.J., Sibille, E., 2004. Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortex. Neurochemical Research, 29(6):1213-1222.
[13] Phan, J.H., Quo, C.F., Guo, K.J., Feng, W.M., Wang, G., Wang, M.D., 2004. Development of a Knowledge-based Multi-scheme Cancer Microarray Data Analysis System. Proc. 2004 IEEE Computational Systems Bioinformatics Conference (CSB’04), p.474-475.
[14] Roos, D.S., 2001. Bioinformatics—trying to swim in a sea of data. Science, 291:1260-1261.
[15] Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E., Golub, T., 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. PNAS, 96(6):2907-2912.
[16] The Gene Ontology Consortium, 2001. Creating the Gene Ontology resource: design and implementation. Genome Res., 11(8):1425-1433.
Open peer comments: Debate/Discuss/Question/Opinion
<1>