CLC number: X703.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 7
Clicked: 5635
CAI Jing, ZHENG Ping, MAHMOOD Qaisar, ISLAM Ejazul, HU Bao-lan, WU Dong-lei. Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation[J]. Journal of Zhejiang University Science A, 2007, 8(7): 1149-1156.
@article{title="Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation",
author="CAI Jing, ZHENG Ping, MAHMOOD Qaisar, ISLAM Ejazul, HU Bao-lan, WU Dong-lei",
journal="Journal of Zhejiang University Science A",
volume="8",
number="7",
pages="1149-1156",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1149"
}
%0 Journal Article
%T Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation
%A CAI Jing
%A ZHENG Ping
%A MAHMOOD Qaisar
%A ISLAM Ejazul
%A HU Bao-lan
%A WU Dong-lei
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 7
%P 1149-1156
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1149
TY - JOUR
T1 - Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation
A1 - CAI Jing
A1 - ZHENG Ping
A1 - MAHMOOD Qaisar
A1 - ISLAM Ejazul
A1 - HU Bao-lan
A1 - WU Dong-lei
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 7
SP - 1149
EP - 1156
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1149
Abstract: The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respectively. The volumetrical volumetric loading rates (LRs) observed through decreasing hydraulic retention time (HRT) at fixed substrate concentration are higher than those by increasing substrate concentration at fixed HRT. The sulfide oxidation in ASO reactor was partially producing both sulfate and sulfur; but the amount of sulfate produced was approximately one third that of sulfur. The process was able to tolerate high sulfide concentration, as the sulfide removal percentage always remained near 99% when influent concentration was up to 580 mg/L. It tolerated relatively lower nitrate concentration because the removal percentage dropped to 85% when influent concentration was increased above 110 mg/L. The process can tolerate shorter HRT but careful operation is needed. Nitrate conversion was more sensitive to HRT than sulfide conversion since the process performance deteriorated abruptly when HRT was decreased from 3.12 h to 2.88 h. In order to avoid nitrite accumulation in the reactor, the influent sulfide and nitrate concentrations should be kept at 280 mg/L and 67.5 mg/L respectively. Present biotechnology is useful for removing sulfides from sewers and crude oil.
[1] APHA (American Public Health Association, Inc.), 1998. Standard Methods for the Examination of Water and Wastewater (20th Ed.). New York, USA.
[2] Basu, R., Clausen, E.C., Gaddy, J.L., 1996. Biological conversion of hydrogen sulfide into elemental sulfur. Environ. Prog., 15(4):234-238.
[3] Bhambhani, Y., Singh, M., 1991. Physiological effects of hydrogen sulfide inhalation during exercise in healthy men. Appl. Physiol., 71:1872-1877.
[4] Buisman, C.J.N., Lettinga, G., 1990. Sulfide from anaerobic waste treatment effluent of a paper mill. Wat. Res., 24(3):313-319.
[5] Buisman, C.J.N., Bert, G., Ijspeert, P., 1990. Optimization of sulfur production in biotechnological sulfide-removing reactor. Biotechnol. Bioeng., 35(1):50-56.
[6] Buisman, C.J.N., Ijspeert, P., Lettinga, G., 1991. Kinetic parameters of a mixed culture oxidizing sulfide and sulfur with oxygen. Biotechnol. Bioeng., 38(8):813-821.
[7] Buisman, C.J.N., Boer, J.D., Boonstra, J., 1993a. A New Biotechnological Method for H2S Removal from Biogas. TAAPI Proceedings, p.773.
[8] Buisman, C.J.N., Bloembergen, J.R., Paalvast, C., 1993b. Biological Sulfur Recovery from Paper Mill Effluent. TAAPI Proceedings, p.841.
[9] Chen, F.G. , Li, W.G. , Pan, G.M. , Liu, J.X. , Jin, C.J., 1995. The study of nitrogen removal with anoxic-aerobic biomembrane process. China Environ. Sci., 15(2):135-138.
[10] Chung, Y.C., Huang, C., Tseng, C.P., 1996. Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal. J. Biotechnol., 52(1):31-38.
[11] Claus, G., Kutzner, H.J., 1985. Autotrophic denitrification by Thiobacillus denitrificans in a packed bed reactor. Appl. Microbiol. Biotechnol., 22(4):289-296.
[12] Gadekar, S., Nemati, M., Hill, G.A., 2006. Batch and continuous biooxidation of sulfide by Thiomicrospira sp. CVO: Reaction kinetics and stoichiometry. Wat. Res., 40(12):2436-2446.
[13] Gayle, B.P., Boardman, G.D., Sherreard, J.H., Benoit, R.E., 1989. Biological denitrification of water. J. Environ. Eng., 115(5):930-943.
[14] Janssen, A.J.H., Ma, S.C., Lens, P., 1997. Performance of a sulfide oxidizing expended bed reactor supplied with dissolved oxygen. Biotechnol. Bioeng., 53(1):32-40.
[15] Jappinen, P., Vilkka, V., Marttila, O., 1990. Exposure to hydrogen sulfide and respiratory function. Br. Ind. Med., 47:824-828.
[16] Kapoor, A., Viraraghavan, T., 1997. Nitrate removal from drinking water—Review. J. Environ. Eng., 123(4):371-380.
[17] Khanna, P., Rajkumar, B., Jyothikumar, N., 1996. Microbial recovery of sulfur from thiosulfate bearing wastewater with phototrophic and sulfate reducing bacteria. Current Microbiol., 32(1):33-37.
[18] Kilburn, K.H., Warshaw, R.H., 1995. Hydrogen sulfide and reduced-sulfur gases adversely affect neurophysiological functions. Toxicol. Ind. Health, 11:185-197.
[19] Kleerebezem, R., Mendez, R., 2002. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Wat. Sci. Tech., 45(10):349-356.
[20] Kobayashi, A.H., Stenstrom, M., Mah, R.A., 1983. Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Wat. Res., 17(5):579-587.
[21] Koenig, A., Liu, L.H., 1996. Autotrophic denitrification of landfill leachate using elemental sulphur. Wat. Sci. Tech., 34(5-6):469-476.
[22] Koenig, A., Liu, L.H., 1997. The study of landfill leachate treatment by Thiobacillus denitrificans. J. Environ. Sci., 18:51-54.
[23] Krishnakumar, B., Manilal, V.B., 1999. Bacterial oxidation of sulphide under denitrifying conditions. Biotechnology Letters, 21(5):437-440.
[24] Lee, M.C., Sublette, K.L., 1993. Microbial treatment of sulfide-laden water. Wat. Res., 27(5):839-846.
[25] Mahmood, Q., Zheng, P., Cai, J., Wu, D.L., Hu, B.L., Li, J.Y., 2007. Anoxic sulfide biooxidation using nitrite as electron acceptor. J. Hazard. Mater. (in Press).
[26] Reyes-Avila, J., Razo-Floresa, E., Gomez, J., 2004. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Wat. Res., 38(14-15):3313-3321.
[27] Rittmann, B.E., McCarty, P.L., 2002. Environmental Biotechnology: Principles and Applications. McGraw-Hill Companies, Inc., p.502.
[28] Shuler, M.L., Kargi, F., 2002. Bioprocess Engineering, Basic Concepts (Second Ed.). Prentice-Hall Inc., Englewood Cliffs, NJ, p.158-160.
[29] Stefess, G.C., Yebeb, J.G., 1989. Factors influencing elemental sulfur production from sulfide or thiosulfate by autotrophic Thiobacilli. Forum Microbiology, 12:92-101.
[30] Sublette, K.L., Heskth, R.P., 1994. Microbial oxidation of hydrogen sulfide in a pilot-scale bubble column. Biotechnology Progress, 10(6):611-614.
[31] Vaiopoulou, E., Melidis, P., Aivasidis, A., 2005. Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Wat. Res., 39(17):4101-4109.
[32] Wang, A.J., Du, D.Z., Ren, N.Q., 2005. An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans. J. Environ. Sci. Health, 40:1939-1949.
[33] Yang, Y., Allen, E.R., 1994a. Biofiltration control of hydrogen sulfide. 1. Design and operational parameters. Journal of Air and Waste Management Association, 44:863-868.
[34] Yang, Y., Allen, E.R., 1994b. biofiltration control of hydrogen sulfide. 2. Kinetics, biofilter performance and maintenance. Journal of Air and Waste Management Association, 44:1315-1321.
[35] Zhang, T.C., Lampe, D.G., 1999. Sulfur: Limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: Batch experiments. Wat. Res., 33(3):599-608.
[36] Zheng, P., Xu, X.Y., Hu, B.L., 2004. New Theory and Technology for Biological Nitrogen Removal. Beijing Science Press, Beijing (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>