CLC number: TH137
On-line Access:
Received: 2007-03-10
Revision Accepted: 2007-06-11
Crosschecked: 0000-00-00
Cited: 7
Clicked: 6422
WANG Chi-yu, ZOU Jun, FU Xin, YANG Hua-yong. Study on hydrodynamic vibration in fluidic flowmeter[J]. Journal of Zhejiang University Science A, 2007, 8(9): 1422-1428.
@article{title="Study on hydrodynamic vibration in fluidic flowmeter",
author="WANG Chi-yu, ZOU Jun, FU Xin, YANG Hua-yong",
journal="Journal of Zhejiang University Science A",
volume="8",
number="9",
pages="1422-1428",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1422"
}
%0 Journal Article
%T Study on hydrodynamic vibration in fluidic flowmeter
%A WANG Chi-yu
%A ZOU Jun
%A FU Xin
%A YANG Hua-yong
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 9
%P 1422-1428
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1422
TY - JOUR
T1 - Study on hydrodynamic vibration in fluidic flowmeter
A1 - WANG Chi-yu
A1 - ZOU Jun
A1 - FU Xin
A1 - YANG Hua-yong
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 9
SP - 1422
EP - 1428
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1422
Abstract: The characteristics of the fluidic flowmeter, which is a combination of impinged concave wall and bistable fluid amplifier, is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration, with the same intensity, frequency and 180° phase shift, occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique, a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.
[1] Boucher, R.F., 1995. Minimum flow optimization of fluidic flowmeters. Measurement Science and Technology, 6(7):872-879.
[2] Boucher, R.F., Mazharoglu, C., 1988. Low Reynolds number fluidic flowmetering. Journal of Physics E: Scientific Instruments, 21(10):977-989.
[3] Boucher, R.F., Beck, S.B.M., Wang, H., 1996. A fluidic flowmetering device for remote measurement. Journal Process Mechanical Engineering, 210(2):93-100.
[4] Davies, R.C., 1970. Functional characteristics of fluid elements. Fluidics Quarterly, 2(2):1-43.
[5] Fu, X., Yang, H.Y., 2001. Study on hydrodynamic vibration in dual bluff body vortex flowmeter. Chinese Journal Chemistry Engineering, 9(2):123-128.
[6] Fu, X., Wang, C.Y., Xie, H.B., Yang, H.Y., 2006. Numerical simulation and experimental study on fluidic flowmeter. Chinese Journal Mechanical Engineering, 42(7):24-29 (in Chinese).
[7] Gao, J.N., Ma, J.G., Jiang, Y., Liu, C.L., 1999. Mechanism and simulation of hydraulic bistable fluidic oscillator. China Petroleum Machinery, 26(6):33-35 (in Chinese)
[8] Grigorievich, Z.E., 2003. Cтруйного Aвтогенератора. Chinese-Russian Academic Exchanges on Key Technology of Electromagnetic Flowmeter. Fluidic Flowmeter & Vortex Procession Flowmeter, Institut Teploehnergeticheskogo Pri, Moscow.
[9] Liu, X.B., Zeng, Y.Z., Huang, H., 2005. Numerical Prediction of pressure fluctuation within francis turbine for large-eddy simulation. Journal of Xihua University, 24(1):1-6 (in Chinese).
[10] Mansy, H., Williams, D.R., 1989. An experimental and numerical study of trapped vortex pair fluidic flowmeter. ASME FED Forum on Turbulent Flows, 76:35-39.
[11] Nakayama, A., Kuwahara, F., Kamiya, Y., 2005. A two dimensional numerical procedure for a three dimensional internal flow through a complex passage with a small depth. International Journal Numerical Methods for Heat & Fluid Flow, 15(8):863-871.
[12] Parry, A.J., Chiwanga, S.G., Kalsi, H.S., Jepson, P., 1991. Numerical and experimental visualization of flow through a target fluidic oscillator. ASME FED Experimental and Numerical Flow Visualization, 128:327-334.
[13] Priestman, G.H., Boucher, R.F., 2005. The biased laminar by-pass fluidic flowmeter. Journal of Fluids Engineering, 127(6):1199-1204.
[14] Priestman, G.H., Boucher, R.F., 2006. Smart fluidic meters for simultaneous measurement of fluid flowrate, Reynolds number, density and viscosity. Journal of Chemical Engineering of Japan, 39(4):383-393.
[15] Su, M.D., 1984. Large eddy simulation—A new method for studying turbulence. Advances in Mechanics, 14(4):440-452.
[16] Tippetts, J.R., Ng, H.K., Royle, J.K., 1973. An oscillating bistable fluid amplifier for use as a flowmeter. Fluidics Quarterly, 5(1):28-42.
[17] Uzol, O., Camci, C., 1998. Oscillator Fin as a Novel Heat Transfer Augmentation Device for Gas Turbine Blade Cooling Applications. Proceedings of ASME Turbo Expo, Stockholm, Sweden.
[18] Wang, H., Priestman, H., Beck, S.B.M., Boucher, R.F., 1996. Development of fluidic flowmeters for monitoring crude oil production. Flow Measurement and Instrumentation, 7(2):91-98.
Open peer comments: Debate/Discuss/Question/Opinion
<1>