CLC number: R733.7
On-line Access:
Received: 2007-01-20
Revision Accepted: 2007-06-23
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5331
JIANG Xiao-yuan, DU Feng, ZHANG Xu, JIA Yan-rong, ZHENG Xiao-ming. Catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 in NO+CO reaction[J]. Journal of Zhejiang University Science A, 2007, 8(11): 1839-1845.
@article{title="Catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 in NO+CO reaction",
author="JIANG Xiao-yuan, DU Feng, ZHANG Xu, JIA Yan-rong, ZHENG Xiao-ming",
journal="Journal of Zhejiang University Science A",
volume="8",
number="11",
pages="1839-1845",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1839"
}
%0 Journal Article
%T Catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 in NO+CO reaction
%A JIANG Xiao-yuan
%A DU Feng
%A ZHANG Xu
%A JIA Yan-rong
%A ZHENG Xiao-ming
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 11
%P 1839-1845
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1839
TY - JOUR
T1 - Catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 in NO+CO reaction
A1 - JIANG Xiao-yuan
A1 - DU Feng
A1 - ZHANG Xu
A1 - JIA Yan-rong
A1 - ZHENG Xiao-ming
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 11
SP - 1839
EP - 1845
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1839
Abstract: Using snxTi1−xO2 as carriers, CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 catalysts with different loading amounts of copper oxide (CuO) were prepared by an impregnation method. The catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 were examined using a microreactor-gas chromatography (GC) NO+CO reaction system and the methods of BET (Brunauer-Emmett-Teller), TG-DTA (themogravimetric and differential thermal analysis), X-ray diffraction (XRD) and H2-temperature programmed reduction (TPR). The results showed that NO conversions of Sn0.9Ti0.1O2 and Sn0.7Ti0.3O2 were 47.2% and 43.6% respectively, which increased to 95.3% and 90.9% at 6 wt% CuO loading. However, further increase in CuO loading caused a decrease in the catalytic activity. The nitrogen adsorption-desorption isotherm and pore-size distribution curve of Sn0.9Ti0.1O2 and Sn0.7Ti0.3O2 represented type IV of the BDDT (Brunauer, Deming, Deming and Teller) system and a typical mesoporous sample. There were two CuO diffraction peaks (2θ 35.5° and 38.7°), and the diffraction peak areas increased with increasing CuO loading. TPR analysis also detected three peaks (α, β and γ) from the CuO-loaded catalysts, suggesting that the α peak was the reduction of the highly dispersed copper oxide, the β peak was the reduction of the isolated copper oxide, and the γ peak was the reduction of crystal phase copper oxide. In addition, a fourth peak (δ) of the catalysts meant that the snxTi1−xO2 mixed oxides could be reductive.
[1] Auroux, A., Sprinceana, D., Gervasini, A., 2000. Support effects on de-NOx catalytic properties of supported tin oxides. J. Catal., 195(1):140-150.
[2] Bennici, S., Gervasini, A., 2006. Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2). Applied Catalysis B: Environmental, 62(3-4):336-344.
[3] Boccuzzi, F., Guglielminotti, E., Martra, G., Cerrato, G., 1994. Nitric oxide reduction by CO on Cu/TiO2 catalysts. J. Catal., 146(2):449-459.
[4] Coq, B., Tachon, D., Figuéras, F., Mabilon, G., Prigent, M., 1995. Selective catalytic reduction of nitrogen monoxide by decane on copper exchanged mordenites. Applied Catalysis B: Environmental, 6(3):271-289.
[5] Córdoba, G., Viniegra, M., Fierro, J.G., Palilla, J., Arroyo, R., 1998. TPR, ESR and XPS study of Cu2+ ions in sol-derived TiO2. J. Solid. State Chem., 138(1):1-6.
[6] Fresno, F., Coronado, J.M., Tudela., D., Soria, J., 2005. Influence of the structural characteristics of Ti1−xSnxO2 nanoparticles on their photocatalytic the elimination of methylcyclohexanc vapors. Applied Catalysis B: Environmental, 55(3):159-167.
[7] Fu, Y.L., Yang, C., Lin, P.Y., 1991. A low-temperature IR spectroscopic study of selective adsorption of NO and CO on CuO/γ-Al2O3. J. Catal., 132(1):85-91.
[8] Giakoumelou, I., Fountzoula, C., Kordulis, C., Boghosian, S., 2006. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: In situ Raman spectra in the presence of O2, NH3, NO, H2O, and SO2. J. Catal., 239(1):1-12.
[9] Gómez-García, M.A., Pitchon, V., Kiennemann, A., 2005. Removal of NOx from lean exhaust gas by storage/reduction on H3PW12O40·6H2O supported on CexZr4−xO8. Exviron. Sci. Technol., 39(2):638-644.
[10] Hu, Y.H., Dong, L., Shen, M.M., Liu, D., Wang, J., Ding, W.P., Chen, Y., 2001. Influence of supports on he activities of copper oxide species in the low-temperature NO+CO reaction. Applied Catalysis B: Environmental, 31(1):61-69.
[11] Jiang, X.Y., Lou, L.P., Chen, Y.X., Zheng, X.M., 2004a. Preparation and characterization of Ce0.3Ti0.7O2 and supported CuO catalysts for NO+CO reaction. Catal. Lett., 94(1-2):49-55.
[12] Jiang, X.Y., Ding, G.H., Lou, L.P., Chen, Y.X., Zheng, X.M., 2004b. Catalytic activities of CuO/TiO2 and CuO-ZrO2/TiO2 in NO+CO reaction. J. Mol. Catal. A: Chemical, 218(2):187-195.
[13] Kong, L.B., Ma, J., Huang, H., 2002. Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process. Mater. Lett., 56(3):344-348.
[14] Kulshreshtha, S.K., Sasikala, R., Sudarsan, V., 2001. Non-random distribution of cations in Sn1−xTixO2 (0.0≤x≤1.0): A 119Sn MAS NMR study. J. Mater. Chem., 11(3):930-935.
[15] Kumar, K.P., Keizer, K., Burggraaf, A.J., 1993. Textural evolution and phase-transformation in titania membranes. J. Mater. Chem., 3(11):1141-1149.
[16] Kung, M.C., Kung, H.H., 2000. Lean NOx catalysis over alumina-supported catalysts. Top. Catal., 10(1-2):21-26.
[17] Larsson, P.O., Anddersson, A., Wallenberg, L.R., Svensson, B., 1996. Combustion of CO and toluene: characterization of copper oxide supported on titania and activity comparisons with supported cobalt iron and manganese oxide. J. Catal., 163(2):279-293.
[18] Liang, J.F., Ma, J., Liu, Z.Q., Yang, X.Y., 2003. TPR and TPD Research of deSOx and deNOx integration catalyst SnO2-TiO2. J. Mol. Catal., 17(5):353-356 (in Chinese).
[19] Liu, Z.Q., Ma, J., Zhang, Z.L., Yang, X.Y., 2002. The reaction mechanism of SO2, NO and CO on the Sn0.5Ti0.5O2 catalysts. Acta Physico-Chimica Sinica, 18(3):193-196 (in Chinese).
[20] Lou, L.P., Jiang, X.Y., Chen, Y.X., Lu, G.L., Zhou, R.X., Zheng, X.M., 2003. CexTi1−xO2 mixed oxides supported CuO catalyst for NO reduction by CO. Journal of Rare Earths, 21(3):331-336 (in Chinese).
[21] Oliveira, M.M., Schnitzler, D.C., Zarbin, A.J., 2003. (Ti,Sn)O2 mixed oxides nanoparticles obtained by the sol-gel route. Chem. Mater., 15(9):1903-1909.
[22] Sensato, F.R., Custodio, R., Longo, E., Beltrán, A., Andrés, J., 2003. Electronic and structural properties of SnxTi1−xO2 solid solutions: A periodic DFT study. Catal. Today, 85(2-4):145-152.
[23] Sheintuch, M., Schmidt, J., Lecthman, Y., Yahav, G., 1989. Modelling catalyst-support interactions in carbon monoxide catalysed by Pb/SnO2. Appl. Catal., 49(1):55-65.
[24] Solymosi, F., Kiss, J., 1976. Adsorption and reduction of NO on tin(IV) oxide catalysts. J. Catal., 41(2):202-211.
[25] Teraoka, Y., Harada, T., Iwasaki, T., 1993. Selective reduction of nitrogen monoxide with hydrocarbons over SnO2 catalyst. Chem. Lett., 22(5):773-776.
[26] Xu, B., Dong, L., Chen, Y., 1998. Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system. Chem. Soc. Faraday Trans., 94(13):1905-1909.
Open peer comments: Debate/Discuss/Question/Opinion
<1>