CLC number: O424
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 6
Clicked: 6118
Tao JIN, Chang-song MAO, Ke TANG, Hao ZHENG, Guo-bang CHEN. Characteristics study on the oscillation onset and damping of a traveling-wave thermoacoustic prime mover[J]. Journal of Zhejiang University Science A, 2008, 9(7): 944-949.
@article{title="Characteristics study on the oscillation onset and damping of a traveling-wave thermoacoustic prime mover",
author="Tao JIN, Chang-song MAO, Ke TANG, Hao ZHENG, Guo-bang CHEN",
journal="Journal of Zhejiang University Science A",
volume="9",
number="7",
pages="944-949",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820061"
}
%0 Journal Article
%T Characteristics study on the oscillation onset and damping of a traveling-wave thermoacoustic prime mover
%A Tao JIN
%A Chang-song MAO
%A Ke TANG
%A Hao ZHENG
%A Guo-bang CHEN
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 7
%P 944-949
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820061
TY - JOUR
T1 - Characteristics study on the oscillation onset and damping of a traveling-wave thermoacoustic prime mover
A1 - Tao JIN
A1 - Chang-song MAO
A1 - Ke TANG
A1 - Hao ZHENG
A1 - Guo-bang CHEN
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 7
SP - 944
EP - 949
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820061
Abstract: This paper focuses on the temperature and pressure characteristics of a Swift-Backhaus type traveling-wave thermoacoustic prime mover during its onset and damping processes, in order to understand the intrinsic mechanism of thermoacoustic oscillation onset and the feasibility of using low-grade thermal energy based on a low onset temperature. The influences of heat input and filling pressure on hysteretic loop, due to the noncoincidence between onset and damping processes, are measured and analyzed. The condition for the occurrence of hysteresis is also briefly discussed.
[1] Backhaus, S., Swift, G.W., 1999. A thermoacoustic Stirling engine. Nature, 399(6734):335-338.
[2] Ceperley, P.H., 1979. A pistonless Stirling engine―the traveling-wave engine. The Journal of the Acoustical Society of America, 66(5):1508-1513.
[3] Chen, G.B., Jin, T., 1999. Experimental investigation on the onset and damping behavior in the thermoacoustic oscillation. Cryogenics, 39(10):843-846.
[4] Garrett, S.L., 2004. Resource letter: TA-1 thermoacoustic engines and refrigerators. American Journal of Physics, 72(1):11-17.
[5] Jin, T., Zhang, B.S., Tang, K., Bao, R., Chen, G.B., 2007. Experimental observation on a small-scale thermoacoustic prime mover. Journal of Zhejiang University SCIENCE A, 8(2):205-209.
[6] Liu, Y.W., He, Y.L., Shen, C., Huang, J., 2007. Experimental study on self-oscillating hysteresis characteristics in the thermoacoustic system. Journal Engineering Thermophysics, 28(3):376-378 (in Chinese).
[7] Penelet, G., Gaviot, E., Gusev, V., Lotton, P., Bruneau, M., 2002. Experimental investigation of transient nonlinear phenomena in an annular thermoacoustic prime-mover: observation of a double-threshold effect. Cryogenics, 42(9):527-532.
[8] Penelet, G., Gusev, V., Lotton, P., Bruneau, M., 2005. Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines. Physical Review E, 72(1)016625-1-016625-13.
[9] Penelet, G., Gusev, V., Lotton, P., Bruneau, M., 2006. Nontrivial influence of acoustic streaming on the efficiency of thermoacoustic prime movers. Physics Letters A, 351(4-5):268-273.
[10] Sun, D.M., 2005. Investigation on Traveling Wave Thermoacoustic Engine and Thermoacoustically Driven Pulse Tube Refrigerator. Ph.D Thesis, Zhejiang University, China, p.60-66 (in Chinese).
[11] Yazaki, T., Iwata, A., Maekawa, T., Tominaga, A., 1998. Traveling wave thermoacoustic engine in a looped tube. Physical Review Letters, 81(15):3128-3131.
[12] Zhou, S.L., Matsubara, Y., 1998. Experimental research of thermoacoustic prime mover. Cryogenics, 38(8):813-822.
Open peer comments: Debate/Discuss/Question/Opinion
<1>