CLC number: TB618
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 3
Clicked: 5797
TANG Ke, HUANG Zhong-jie, JIN Tao, BAO Rui, CHEN Guo-bang. Influence of input acoustic power on regenerator’s performance[J]. Journal of Zhejiang University Science A, 2007, 8(9): 1452-1456.
@article{title="Influence of input acoustic power on regenerator’s performance",
author="TANG Ke, HUANG Zhong-jie, JIN Tao, BAO Rui, CHEN Guo-bang",
journal="Journal of Zhejiang University Science A",
volume="8",
number="9",
pages="1452-1456",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1452"
}
%0 Journal Article
%T Influence of input acoustic power on regenerator’s performance
%A TANG Ke
%A HUANG Zhong-jie
%A JIN Tao
%A BAO Rui
%A CHEN Guo-bang
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 9
%P 1452-1456
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1452
TY - JOUR
T1 - Influence of input acoustic power on regenerator’s performance
A1 - TANG Ke
A1 - HUANG Zhong-jie
A1 - JIN Tao
A1 - BAO Rui
A1 - CHEN Guo-bang
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 9
SP - 1452
EP - 1456
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1452
Abstract: Performance of a pulse tube cooler significantly depends on the efficient operation of its regenerator. Influence of input acoustic power on regenerator’s performance is simulated and analyzed with simple harmonic analysis method. Given regenerator’s dimensions and pressure ratio, there is an optimal input acoustic power for achieving a highest coefficient of performance, due to a compromise between relative time-averaged total energy flux in regenerator and relative acoustic power at regenerator’s cold end. Additionally, optimal dimensions of regenerator are also estimated and presented for different input acoustic powers. The computed optimal diameter obviously increases with increase of input acoustic power, while the optimal length decreases slightly, and as a result, a larger input acoustic power requires a smaller aspect ratio (length over diameter).
[1] Marquardt, E.D., Radebaugh, R., 2000. Pulse tube oxygen liquefier. Advances in Cryogenic Engineering, 45:457-464.
[2] Nam, K., Jeong, S., 2003. Measurement of cryogenic regenerator characteristics under oscillating flow and pulsating pressure. Cryogenics, 43(10-11):575-581.
[3] Nam, K., Jeong, S., 2005. Investigation of oscillating flow friction factor for cryocooler regenerator considering cryogenic temperature effect. Cryogenics, 45(12):733-738.
[4] Pfotenhauer, J.M., Shi, J.L., Nellis, G.F., 2005. A parametric optimization of a single stage regenerator using REGEN 3.2. Cryocoolers 13:463-470.
[5] Qiu, L.M., He, Y.L., Gan, Z.H., Zhang, X.B., Chen, G.B., 2007. Regenerator performance improvement of a single-stage pulse tube cooler reached 11.1 K. Cryogenics, 47(1):49-55.
[6] Radebaugh, R., O’Gallagher, A., 2006. Regenerator operation at very high frequencies for microcryocoolers. Advances in Cryogenic Engineering, 51:1919-1928.
[7] Rawlins, W., Radebaugh, R., Bradley, P.E., Timmerhaus, K.D., 1994. Energy flows in an orifice pulse tube refrigerator. Advances in Cryogenic Engineering, 39:1449-1456.
[8] Swift, G.W., 2002. Thermoacoustics: A Unifying Perspective for some Engines and Refrigerators. Acoustical Society of America Publications, Sewickley, PA.
[9] Swift, G.W., Ward, W.C., 1996. Simple harmonic analysis of regenerators. Journal of Thermophysics and Heat Transfer, 10(4):652-662.
[10] Wysokinski, T.W., Barclay, J.A., Gschneidner, K.A.Jr., Pecharsky, V.K., Pecharsky, A.O., 2002. Comparative evaluation of erbium and lead regenerator materials for low temperature cryocoolers. Cryogenics, 42(8):463-467.
[11] Zhu, S.W., Matsubara, Y., 2004. A numerical method of regenerator. Cryogenics, 44(2):131-140.
Open peer comments: Debate/Discuss/Question/Opinion
<1>