Full Text:   <3408>

CLC number: X703.1

On-line Access: 

Received: 2008-03-06

Revision Accepted: 2008-06-02

Crosschecked: 0000-00-00

Cited: 16

Clicked: 5843

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2008 Vol.9 No.9 P.1283-1287


Removal of copper ions from electroplating rinse water using electrodeionization

Author(s):  Xiao FENG, Jun-song GAO, Zu-cheng WU

Affiliation(s):  Department of Environmental Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   wuzc@zju.edu.cn

Key Words:  Electrodeionization (EDI), Electroplating wastewater, Heavy metal, Precipitation

Xiao FENG, Jun-song GAO, Zu-cheng WU. Removal of copper ions from electroplating rinse water using electrodeionization[J]. Journal of Zhejiang University Science A, 2008, 9(9): 1283-1287.

@article{title="Removal of copper ions from electroplating rinse water using electrodeionization",
author="Xiao FENG, Jun-song GAO, Zu-cheng WU",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Removal of copper ions from electroplating rinse water using electrodeionization
%A Xiao FENG
%A Jun-song GAO
%A Zu-cheng WU
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 9
%P 1283-1287
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820166

T1 - Removal of copper ions from electroplating rinse water using electrodeionization
A1 - Xiao FENG
A1 - Jun-song GAO
A1 - Zu-cheng WU
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 9
SP - 1283
EP - 1287
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820166

An improved configuration of the membrane stack was adopted in the electrodeionization (EDI) cell to prevent precipitation of bivalent metal hydroxide during the running. The operational parameters that influenced the removal of copper ions from the dilute solution were optimized. The result showed that a moderate decrease in the inlet pH value and a moderate increase in the applied voltage could achieve a better removal effect. The steady process of electroplating wastewater treatment could be achieved with a removal efficiency of more than 99.5% and an enrichment factor of 5~14. The concentration of copper in purified water was less than 0.23 mg/L. This demonstrated the applicability of recovering heavy metal ions and purified water from electroplating effluent for industrial reuse.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Chen, X., Wu, Z., 2005. A new configuration of membrane stack for retrieval of nickel absorbed in resins. Journal of Zhejiang University SCIENCE, 6B(6):543-545.

[2] Dzyazko, Y.S., Belyakov, V.N., 2004. Purification of a diluted nickel solution containing nickel by a process combining ion exchange and electrodialysis. Desalination, 162(1-3):179-189.

[3] Grebenyuk, V.D., Chebotareva, R.D., Linkov, N.A., Linkov, V.M., 1998. Electromembrane extraction of Zn from Na-containing solutions using hybrid electrodialysis-ion exchange method. Desalination, 115(3):255-263.

[4] Janssen, L.J.J., Koene, L., 2002. The role of electrochemistry and electrochemical technology in environmental protection. Chemical Engineering Journal, 85(2-3):137-146.

[5] Jüttner, K., Galla, U., Schmieder, H., 2000. Electrochemical approaches to environmental problems in the process industry. Electrochimica Acta, 45(15-16):2575-2594.

[6] Koene, L., Janssen, L.J.J., 2001. Removal of nickel from industrial process liquids. Electrochimica Acta, 47(5):695-703.

[7] Korngold, E., Aronov, L., Kedem, O., 1998. Novel ion-exchange spacer for improving electrodialysis I. Reacted spacer. Journal of Membrane Science, 138(2):165-170.

[8] Marder, L., Bernardes, A.M., Ferreira, J.Z., 2004. Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Separation and Purification Technology, 37(3):247-255.

[9] Monzie, I., Muhr, L., Lapicque, F., Grévillot, G., 2005. Mass transfer investigations in electrodeionization processes using the microcolumn technique. Chemical Engineering Science, 60(5):1389-1399.

[10] Souilah, O., Akretche, D.E., Amara, M., 2004. Water reuse of an industrial effluent by means of electrodeionization. Desalination, 167(1-3):49-54.

[11] Spoor, P.B., Grabovska, L., Koene, L., Janssen, L.J.J., ter Veen, W.R., 2002a. Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system. Chemical Engineering Journal, 89(1-3):193-202.

[12] Spoor, P.B., Koene, L., Janssen, L.J.J., 2002b. Potential and concentration gradients in a hybrid ion-exchange/electro-dialysis cell. Journal of Applied Electrochemistry, 32(4):369-377.

[13] Spoor, P.B., Koene, L., ter Veen, W.R., Janssen, L.J.J., 2002c. Electrodeionisation 3: The removal of nickel ions from dilute solutions. Journal of Applied Electrochemistry, 32(1):1-10.

[14] Spoor, P.B., Koene, L., ter Veen, W.R., Janssen, L.J.J., 2002d. Continuous deionization of a dilute nickel solution. Chemical Engineering Journal, 85(2-3):127-135.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE