CLC number: TP391.7
On-line Access:
Received: 2008-06-08
Revision Accepted: 2008-09-01
Crosschecked: 2009-04-28
Cited: 0
Clicked: 5735
Jiang QIAN, Xiu-zi YE, Cui-hao FANG, San-yuan ZHANG. Mesh parameterization based on edge collapse[J]. Journal of Zhejiang University Science A, 2009, 10(8): 1153-1159.
@article{title="Mesh parameterization based on edge collapse",
author="Jiang QIAN, Xiu-zi YE, Cui-hao FANG, San-yuan ZHANG",
journal="Journal of Zhejiang University Science A",
volume="10",
number="8",
pages="1153-1159",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820428"
}
%0 Journal Article
%T Mesh parameterization based on edge collapse
%A Jiang QIAN
%A Xiu-zi YE
%A Cui-hao FANG
%A San-yuan ZHANG
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 8
%P 1153-1159
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820428
TY - JOUR
T1 - Mesh parameterization based on edge collapse
A1 - Jiang QIAN
A1 - Xiu-zi YE
A1 - Cui-hao FANG
A1 - San-yuan ZHANG
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 8
SP - 1153
EP - 1159
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820428
Abstract: Parameterizations that use mesh simplification to build the base domain always adopt the vertex removal scheme. This paper applies edge collapse to constructing the base domain instead. After inducing the parameterization of the original mesh over the base domain, new algorithms map the new vertices in the simplified mesh back to the original one according to the edge transition sequence to integrate the parameterization. We present a direct way, namely edge classification, to deduce the sequence. Experimental results show that the new parameterization features considerable saving in computing complexity and maintains smoothness.
[1] Cohen, J.D., 1999. Concepts and Algorithms for Polygon Simplification. Proc. ACM SIGGRAPH, Course Notes, p.C1-C34.
[2] Duchamp, T., Certain, A., Derose, T., Stuetzle, W., 1997. Hierarchical Computation of PL Harmonic Embeddings. Technical Report, University of Washington, Washington, D.C., USA.
[3] Garland, M., Heckbert, P., 1997. Surface Simplification Using Quadric Error Metrics. Proc. ACM. SIGGRAPH, p.209-216.
[4] Guskov, I., Vidimce, K., Sweldens, W., Schroder, P., 2000. Normal Meshes. Proc. ACM SIGGRAPH, p.95-102.
[5] Heckbert, P., Garland, M., 1997. Survey of Polygonal Surface Simplification Algorithms. Proc. ACM SIGGRAPH, Multiresolution Surface Modeling Course Notes, p.1-31.
[6] Khodakovsky, A., Schroder, P., Sweldens, W., 2000. Progressive Geometry Compression. Proc. ACM SIGGRAPH, p.271-278.
[7] Khodakovsky, A., Litke, N., Schroder, P., 2003. Globally Smooth Parameterizations with Low Distortion. Proc. ACM SIGGRAPH, p.350-357.
[8] Lee, A., Sweldens, W., Schroder, P., Cowsar, L., Dobkin, D., 1998. MAPS: Multiresolution Adaptive Parameterization of Surfaces. Proc. ACM SIGGRAPH, p.95-104.
[9] Lee, A., Dobkin, D., Sweldens, W., Schroder, P., 1999. Multiresolution Mesh Morphing. Proc. ACM SIGGRAPH, p.343-350.
[10] Levy, B., Petitjean, S., Ray, N., Maillot, J., 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph., 21(3):362-371.
[11] Luebke, D., 2001. A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl., 21(1):24-35.
[12] Schroeder, W.J., Zarge, J.A., Lorensen, W.E., 1992. Decimation of Triangle Meshes. Proc. 19th Annual Conf. on Computer Graphics and Interactive Techniques, p.65-70.
Open peer comments: Debate/Discuss/Question/Opinion
<1>