CLC number: TH7; TM15
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-05-27
Cited: 5
Clicked: 7272
Hong-li QI, Hui ZHAO, Wei-wen LIU, Hai-bo ZHANG. Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm[J]. Journal of Zhejiang University Science A, 2009, 10(8): 1205-1212.
@article{title="Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm",
author="Hong-li QI, Hui ZHAO, Wei-wen LIU, Hai-bo ZHANG",
journal="Journal of Zhejiang University Science A",
volume="10",
number="8",
pages="1205-1212",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820564"
}
%0 Journal Article
%T Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm
%A Hong-li QI
%A Hui ZHAO
%A Wei-wen LIU
%A Hai-bo ZHANG
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 8
%P 1205-1212
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820564
TY - JOUR
T1 - Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm
A1 - Hong-li QI
A1 - Hui ZHAO
A1 - Wei-wen LIU
A1 - Hai-bo ZHANG
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 8
SP - 1205
EP - 1212
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820564
Abstract: A grating eddy current displacement sensor (GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions. The parameters optimization of the sensor is essential for economic and efficient production. This paper proposes a method to combine an artificial neural network (ANN) and a genetic algorithm (GA) for the sensor parameters optimization. A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS, and then a GA is used in the optimization process to determine the design parameter values, resulting in a desired minimal nonlinearity error of about 0.11%. The calculated nonlinearity error is 0.25%. These results show that the proposed method performs well for the parameters optimization of the GECDS.
[1] Cook, D.F., Ragsdalt, C.T., Major, R.L., 2000. Combining a neural network with a genetic algorithm for process parameter optimization. Eng. Appl. Artif. Intell., 13(4):391-396.
[2] Davidenko, I.I., Al-Kadhimi, A.J., 2004. Magnetic grating in garnets in spatially periodic effective and real magnetic field. J. Magn. Magn. Mater., 272-276:363-364.
[3] Dinulovic, D., Gatzen, H.H., 2006. Microfabricated inductive micropositioning sensor for measurement of a linear movement. IEEE Sens. J., 6(6):1482-1487.
[4] Hall, N.A., Lee, W., Dervan, J., Degertekin, F.L., 2002. Micromachined Capacitive Transducer with Improved Optical Detection for Ultrasound Applications in Air. IEEE Ultrasonics Symp., p.1027-1030.
[5] Hamasaki, Y., Ide, T., 1995. Fabrication of Multi-layer Eddy Current Micro Sensors for Non-destructive Inspection of Small Diameter Pipes. Proc. IEEE Micro Electro Mechanical Systems, p.232-237.
[6] Kacprzak, D., Taniguchi, T., Nakamura, K., Yamada, S., Iwahara, M., 2001. Novel eddy current testing sensor for the inspection of printed circuit boards. IEEE Trans. Magn., 37(4):2010-2012.
[7] Mitutoyo Corporation, 1998. Induced Current Absolute Position Transducer Using a Code-track-type Scale and Read Head. US Patent, 08/790 494.
[8] Mitutoyo Corporation, 2002. Electronic Caliper Using a Reduced Offset Induced Current Position Transducer. US Patent, 09/527 518.
[9] Pratap, R.J., Sarkaf, S., Pinel, S., Laskar, J., May, G.S., 2004. Modeling and Optimization of Multilayer LTCC Inductors for RF/Wireless Application Using Neural Network and Genetic Algorithms. IEEE Electronic Components and Technology Conf., p.248-254.
[10] Prelle, C., Lamarque, F., Revel, P., 2006. Reflective optical sensor for long-range and high-resolution displacements. Sens. Actuat. A, 127(1):139-146.
[11] Qi, H.L., Zhao, H., Liu, W.W., 2009. Characteristics analysis and parameters optimization for the grating eddy current displacement sensor. J. Zhejiang Univ. Sci. A, 10(7):1029-1037.
[12] Shen, C.Y., Wang, L.X., Li, Q., 2007. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J. Mater. Process. Technol., 183(2-3):412-418.
[13] Yamada, S., Chomsuwan, K., Fukuda, Y., Iwahara, M., Wakiwaka, H., Shoji, S., 2004. Eddy-current testing probe with spin-valve type GMR sensor for printed circuit board inspection. IEEE Trans. Magn., 40(4):2676-2678.
[14] Yang, T., Lin, H.C., Chen, M.L., 2006. Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms: a case study. Rob. Comput.-Integr. Manuf., 22(4):322-331.
[15] Zhang, S.Z., Kiyono, S., 2001. An absolute calibration method for displacement sensors. Measurement, 29(1):11-20.
[16] Zhao, H., Ma, D.L., Liu, W.W., Yu, P., 2004a. Design of a new inductive grating displacement sensor and application in liquid resistant caliper. J. Shanghai Jiao Tong Univ., 38(8):1382-1384 (in Chinese).
[17] Zhao, H., Liu, W.W., Yu, P., Tao, W., 2004b. Summary on water-proof electronic digital caliper. New Technol. New Process, (12):7-10. (in Chinese).
[18] Zhou, D.L., Zhao, H., Liu, W.W., Hong, H.T., 2005. 3-D FEA simulating study on the parameters of eddy current displacement sensor. Comput. Meas. Control, 13(6):618-620 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>