Full Text:   <3286>

CLC number: TH7; TM15

On-line Access: 

Received: 2008-05-09

Revision Accepted: 2008-09-05

Crosschecked: 2009-04-27

Cited: 6

Clicked: 6002

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2009 Vol.10 No.7 P.1029-1037


Characteristics analysis and parameters optimization for the grating eddy current displacement sensor

Author(s):  Hong-li QI, Hui ZHAO, Wei-wen LIU

Affiliation(s):  Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding email(s):   huizhao@sjtu.edu.cn

Key Words:  Grating eddy current displacement sensor (GECDS), Watertight electronic calipers, Parameters optimization, Nonlinearity

Hong-li QI, Hui ZHAO, Wei-wen LIU. Characteristics analysis and parameters optimization for the grating eddy current displacement sensor[J]. Journal of Zhejiang University Science A, 2009, 10(7): 1029-1037.

@article{title="Characteristics analysis and parameters optimization for the grating eddy current displacement sensor",
author="Hong-li QI, Hui ZHAO, Wei-wen LIU",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Characteristics analysis and parameters optimization for the grating eddy current displacement sensor
%A Hong-li QI
%A Wei-wen LIU
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 7
%P 1029-1037
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820358

T1 - Characteristics analysis and parameters optimization for the grating eddy current displacement sensor
A1 - Hong-li QI
A1 - Hui ZHAO
A1 - Wei-wen LIU
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 7
SP - 1029
EP - 1037
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820358

The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Brown and Sharpe Tesa S.A., 2001. Magnetoresistive Sensor for High Precision Measurements of Lengths and Angles. US Patent, No. 6191578.

[2] Corda, J., Tayie, J.k.A., Slater, P., 1999. Contactless linear position transducer based on reluctance variation. IEE Proc.-Electr. Power Appl., 146(6):585-590.

[3] Dinulovic, D., Gatzen, H.H., 2006. Microfabricated inductive micropositioning sensor for measurement of a linear movement. IEEE Sensors J., 6(6):1482-1487.

[4] Dinulovic, D., Hermann, D., Fluegge, J., Gatzen, H.H., 2006. Development of a linear micro-inductosyn sensor. IEEE Trans. Magn., 42(10):2830-2832.

[5] Ditchburn, R.J., Burke, S.K., 2005. Planar rectangular spiral coils in eddy-current non-destructive inspection. NDT & E Int., 38(8):690-700.

[6] Hamasaki, Y., Ide, T., 1995. Fabrication of Multi-Layer Eddy Current Micro Sensors for Non-destructive Inspection of Small Diameter Pipes. Micro Electro Mechanical Systems (MEMS), Proc. IEEE, p.232-237.

[7] Huang, L., Rahman, A., Rolph, W.D., Pare, C., 2001. Electromagnetic finite element analysis for designing high frequency inductive position sensors. IEEE Trans. Magn., 37(5):3702-3705.

[8] Jagiella, M., Fericean, S., 2002. Miniaturized Inductive Sensors for Industrial Applications. Proc. IEEE Sensors, 2:771-778.

[9] Juillard, J., Barmon, B., Berthiau, G., 2000. Simple analytical three-dimensional eddy-current model. IEEE Trans. Magn., 36(1):258-266.

[10] Kacprzak, D., Taniguchi, T., Nakamura, K., Yamada, S., Iwahara, M., 2001. Novel eddy current testing sensor for the inspection of printed circuit boards. IEEE Trans. Magn., 37(4):2010-2012.

[11] Mitutoyo Corporation, 1998. Induced Current Absolute Position Transducer Using a Code-track-type Scale and Read Head. US Patent, No. 5841274.

[12] Sydenham, P.H., Taing, V., Mounsey, D.J., Yu, W.X., 1995. Low-cost, precision, flat inductive sensor. Measurement, 15(3):179-188.

[13] Theodoulidis, T.P., Kriezis, E.E., 2002. Impedance evaluation of rectangular coils for eddy current testing of planar media. NDT & E Int., 35(6):407-414.

[14] Yamada, S., Chomsuwan, K., Fukuda, Y., Iwahara, M., Wakiwaka, H., Shoji, S., 2004. Eddy-current testing probe with spin-valve type GMR sensor for printed circuit board inspection. IEEE Trans. Magn., 40(4):2676-2678.

[15] Zhao, H., Ma, D.L., Liu, W.W., Yu, P., 2004a. Design of a new inductive grating displacement sensor and application in liquid resistant caliper. J. Shanghai Jiao Tong Univ., 38(8):1382-1384 (in Chinese).

[16] Zhao, H., Liu, W.W., Yu, P., Tao, W., 2004b. Summary on water-proof electronic digital caliper. New Technol. & New Process, (12):7-10 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE