Full Text:   <3162>

CLC number: O34

On-line Access: 

Received: 2009-04-12

Revision Accepted: 2009-09-03

Crosschecked: 2010-01-07

Cited: 3

Clicked: 6472

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2010 Vol.11 No.3 P.165-174


Nonlinear identification of electro-magnetic force model


Affiliation(s):  Mechanical Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran; more

Corresponding email(s):   r.shabani@urmia.ac.ir

Key Words:  Identification, Nonlinear vibration, Magnetic bearing, Weighted residual method

R. SHABANI, S. TARIVERDILO, H. SALARIEH. Nonlinear identification of electro-magnetic force model[J]. Journal of Zhejiang University Science A, 2010, 11(3): 165-174.

@article{title="Nonlinear identification of electro-magnetic force model",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Nonlinear identification of electro-magnetic force model
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 3
%P 165-174
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0900203

T1 - Nonlinear identification of electro-magnetic force model
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 3
SP - 165
EP - 174
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0900203

Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of electromagnetic losses, flux leakage or saturation of iron. In this paper, based on results from an experimental set-up designed to study magnetic force, a novel parametric model is presented in the form of a nonlinear polynomial with unknown coefficients. The parameters of the proposed model are identified using the weighted residual method. Validations of the model identified were performed by comparing the results in time and frequency domains. The results show a good correlation between experiments and numerical simulations.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Alasty, A., Shabani, R., 2006. Nonlinear parametric identification of magnetic bearings. Mechatronics, 16(8):451-459.

[2] Athans, M., Wishner, R.P., Bertolini, A.B., 1968. Suboptimal state estimation for continuous-time nonlinear system from discrete noisy measurements. IEEE Transactions on Automatic Control, 13(5):504-514.

[3] Beliveau, J.G., 1976. Identification of viscous damping in structures from model information. ASME, Journal of Applied Mechanics, 43:335-339.

[4] Bonisoli, E., Vigliani, A., 2007. Identification techniques applied to a passive elasto-magnetic suspension. Mechanical Systems and Signal Processing, 21(3):1479-1488.

[5] Chang, S.C., Tung, P.C., 1998. Identification of a non-linear electromagnetic system: An experimental study. Journal of Sound and Vibration, 214(5):853-871.

[6] Finigan, B.M., Rowe, I.H., 1974. Strongly consistent parameter estimation by the introduction of strong instrumental variables. IEEE Transaction on Automatic Control, 19(6):825-830.

[7] Gertler, J., Banyasz, C., 1974. A recursive (on-line) maximum likelihood identification method. IEEE Transaction on Automatic Control, 19(6):816-820.

[8] Gosiewski, Z., Mystkowski, A., 2008. Robust control of active magnetic suspension: Analytical and experimental results. Mechanical Systems and Signal Processing, 22(6):1297-1303.

[9] Hsia, T.C., 1976. Least square algorithm for system identification. IEEE Transaction on Automatic Control, 21(1):104-108.

[10] Hung, J.Y., Albritton, N.G., Xia, F., 2003. Nonlinear control of a magnetic bearing system. Mechatronics, 13(6):621-637.

[11] Ibanez, P., 1973. Identification of dynamic parameters of linear and nonlinear structural models from experimental data. Nuclear Engineering and Design, 25:30-41.

[12] Inayat-Hussain, J.I., 2007. Chaos via torus breakdown in the vibration response of a rigid rotor supported by active magnetic bearings. Chaos, Solitons and Fractals, 31(4):912-927.

[13] Jang, M.J., Chen, C.L., Tsao, Y.M., 2005. Sliding mode control for active magnetic bearing system with flexible rotor. Journal of the Franklin Institute, 342(4):401-419.

[14] Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory. Academic Press, New York.

[15] Jeng, J.T., 2000. Nonlinear adaptive inverse control for the magnetic bearing system. Journal of Magnetism and Magnetic Materials, 209(1-3):186-188.

[16] Ji, J.C., Hansen, C.H., 2001. Non-linear oscillations of a rotor in active magnetic bearings. Journal of Sound and Vibration, 240(4):599-612.

[17] Julier, S.J., Uhlmann, J.K., 1997. A New Extension of the Kalman Filter to Nonlinear Systems. The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Control, Orlando, FL.

[18] Lu, B., Choi, H., Buckner, G.D., Tammi, K., 2008. Linear parameter-varying techniques for control of a magnetic bearing system. Control Engineering Practice, 16(10):1161-1172.

[19] Moon, F.C., Pao, Y.H., 1969. Vibration and dynamic instability of a beam-plate in a transverse magnetic field. ASME Transactions, Journal of Applied Mechanics, 36:92-100.

[20] Schroder, P., Green, B., Grumm, N., Fleming, P.J., 2001. On-line evolution of robust control systems: an industrial active magnetic bearing application. Control Engineering Practice, 9(1):37-49.

[21] Shabani, R., Salarieh, H., Alasty, A., 2006. Comments on “Identification of a nonlinear electromagnetic system: An experimental study”. Journal of Sound and Vibrations, 290(3-5):1333-1334.

[22] Sortore, C.K., 1990. Permanent Magnet Biased Magnetic Bearing Design, Construction and Testing. Proceedings 2nd Internatioal Symposium on Magnetic Bearings, Tokyo, Japan, p.175-182.

[23] Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov exponents from a time series. Physica, 16D:285-317.

[24] Yasuda, K., Kawamura, S., Watanabe, S., 1988. Identification of non-linear multi-degree-of-freedom systems (Presentation of an identification technique). JSME International Journal Series III, 31:8-14.

[25] Yi, K., Hedrick, K., 1995. Observer-based identification of nonlinear system parameters. Journal of Dynamic Systems Measurement and Control, 117:175-182.

[26] Zhang, J.X., Roberts, J.B., 1996. A frequency domain parametric identification method for studying the non-linear performance of squeeze-film dampers. Journal of Sound and Vibration, 189:173-191.

[27] Zhang, W., Zhan, X.P., 2005. Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dynamics, 41(4):331-359.

[28] Zhang, W., Yao, M.H., Zhan, X.P., 2006. Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness. Chaos, Solitons and Fractals, 27(1):175-186.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE